CSCI 403 Database Management

19 Multivalued Dependencies 4th Normal Form

CS@Mines

This Lecture

A brief overview of multivalued dependencies and fourth normal form.

This will not be on the test (but will be extra credit on project 8).

CS@Mines

MVDs and 4NF

- Previous lectures:
 - Functional dependencies (FD)
 - Boyce-Codd Normal Form (BCNF)
- This lecture:
 - Multivalued dependencies (MVD)
 - 4th Normal Form (4NF)

We'll see that MVDs guide the way to 4NF the same way FDs guided us to BCNF!

CS@Mines

Working Example

Consider this relation detailing:

- instructors
- courses they teach
- their hobbies

What FD's do you see? What superkeys? Is it in BCNF?

instructor		hobby
CPW	CSCI262	hiking
CPW	CSCI262	sci-fi
CPW	CSCI403	hiking
CPW	CSCI403	sci-fi
Baldwin	CSCI262	photography
Paone	CSCI261	hiking
Paone	CSCI261	board games

CS@Mines

Recall: FDs

Definition:

Given a relation schema R and sets of attributes X and Y, then we say a functional dependency $X \rightarrow Y$ exists if, whenever tuples t_1 and t_2 are two tuples from any relation r(R) such that $t_1[X] = t_2[X]$, it is also true that $t_1[Y] = t_2[Y]$.

■ The lingo:

We say X functionally determines Y, or Y is functionally dependent on X.

CS@Mines

Multivalued Dependencies

Definition:

A multivalued dependency $X \rightarrow Y$ exists on a relation R if whenever there are two tuples t_1 and t_2 which agree on the attributes in X, then there must also exist a tuple t_3 (possibly the same as t_1 or t_2) such that the following are true:

$$t_3[X] = t_1[X] = t_2[X]$$

$$\mathsf{t}_3[\mathsf{Y}] = \mathsf{t}_2[\mathsf{Y}]$$

$$\mathsf{t}_3[\mathsf{Z}] = \mathsf{t}_1[\mathsf{Z}]$$

where Z contains all attributes of R not in X or Y.

CS@Mines

Multivalued Dependencies 2

To recap: if $X \rightarrow Y$ and we have two tuples t_1 and t_2 such that

 $\mathsf{t}_1[\mathsf{X}] = \mathsf{t}_2[\mathsf{X}]$

then t₃ (which may actually be t₁ or t₂) exists, and

 $t_3[X] = t_1[X] = t_2[X]$

 $\mathsf{t}_3[\mathsf{Y}] = \mathsf{t}_2[\mathsf{Y}]$

 $\mathsf{t}_3[\mathsf{Z}] = \mathsf{t}_1[\mathsf{Z}]$

Furthermore, it turns out that by symmetry there must also exist t_a, with

 $t_4[X] = t_1[X] = t_2[X] = t_3[X]$

 $\mathsf{t_4}[\mathsf{Y}] = \mathsf{t_1}[\mathsf{Y}]$

 $\mathsf{t}_4[\mathsf{Z}] = \mathsf{t}_2[\mathsf{Z}]$

CS@Mines

MVD Summary

This table may help (assume $X \rightarrow Y$)

		Х	Υ	Z
Agree on X	t ₁	х	y ₁	Z ₁
	t ₂	х	y ₂	Z ₁
Must exist	t ₃	х	y ₂	Z ₂
Must also exist	t,	х	V ₁	Za

CS@Mines

Multivalued Dependencies 3

- If X → Y, we say "X multi-determines Y".
- Note
 - If X → Y, with Z being everything else, then X → Z as well (follows from the definition/table above)
 - It is common to therefore write $X \rightarrow Y|Z$

CS@Mines

How Does This Happen?

Combining independent concepts in a relation. Look at our example from the beginning:

What do courses have to do with hobbies?

What is the MVD?

instructor	course	hobby
CPW	CSCI262	hiking
CPW	CSCI262	sci-fi
CPW	CSCI403	hiking
CPW	CSCI403	sci-fi
Baldwin	CSCI262	photography
Paone	CSCI261	hiking
Paone	CSCI261	board games

CS@Mines

Discussion

Effectively, we have a cross-product of independent relations: instructors have courses; they also have hobbies.

- For every course I teach, I have all of my hobbies.
- For every hobby I enjoy, I have all of my courses!

Note this results in a subtle form of redundancy.

However, the relation has no non-trivial FDs, and the table is in BCNF!

CS@Mines

4th Normal Form

Definition:

A relation R is in 4NF with respect to some set of multivalued dependencies if, for every non-trivial MVD $X \twoheadrightarrow Y$, X is a superkey of R.

This looks familiar, and so will the next part...

CS@Mines

4NF Decomposition Algorithm

If we have a relation not in 4NF:

- Find a violating MVD $X \rightarrow Y|Z$
- Decompose R into
 - R1 = X U Y
 - R2 = X U Z

CS@Mines

Subsumption of BCNF by 4NF

- Any FD qualifies as an MVD
 - By definition, although you may have to convince yourself of this...
- Therefore, if we eliminate all violating MVDs, this includes all violating FDs ⇒ BCNF as well as 4NF

CS@Mines

Next Time

Disks, database file organization, B-Trees

CS@Mines