
10/23/2018

1

CSCI 403 Database

Management

18 – Normalization

This Lecture

• Normalization

• Boyce-Codd Normal Form

Example Relation

Instructor Course_id Section Title Office Email

Painter-Wakefield,
Christopher

CSCI403 A DATABASE MANAGEMENT BB 280I cpainter@mines.edu

Painter-Wakefield,
Christopher

CSCI262 A DATA STRUCTURES BB 280I cpainter@mines.edu

Painter-Wakefield,
Christopher

CSCI262 B DATA STRUCTURES BB 280I cpainter@mines.edu

Mehta, Dinesh CSCI406 A ALGORITHMS BB 280J dmehta@mines.edu

Mehta, Dinesh CSCI 561 A THEORY OF COMPUTATION BB 280J dmehta@mines.edu

Hellman, Keith CSCI 101 A INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 101 B INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 101 C INTRO TO COMPUTER SCIENCE BB 310F khellman@mines.edu

Hellman, Keith CSCI 274 A INTRO TO LINUX OS BB 310F khellman@mines.edu

Figure 1: One possible relation storing Mines course information:

Functional Dependencies Review

 Our primary tool for eliminating redundancy and
modification anomalies

 A kind of constraint between two sets of attributes in a
relation schema

 Definition:
Given a relation schema R and sets of attributes X and Y, then
we say a functional dependency X → Y exists if, whenever
tuples t1 and t2 are two tuples from any relation r(R) such that
t1[X] = t2[X], it is also true that t1[Y] = t2[Y].

 The lingo:
We say X functionally determines Y, or Y is functionally
dependent on X.

Functional Dependencies Review

2
 In other words:

If it is always true that whenever two tuples agree on
attributes X, they also agree on Y, then X → Y.

 Example:
If we assert that an instructor is always associated with
one office and email, then

{ instructor } → { office, email }

is a functional dependency (FD) on the example table in
figure 1.

X Y

Normal Forms

 Developed to define “good” design for a database
 Several forms: First normal form (1NF), Second (2NF), etc.
 Each normal form describe certain properties of a database

 E.g., 1NF eliminates multivalued and compound attributes
 Mostly later normal forms subsume earlier normal forms

 1NF – 3NF are not terribly interesting stepping stones to
the forms we care about:
 Boyce-Codd Normal Form (BCNF)
 Fourth Normal Form (4NF)

 There exist even stronger normal forms (5NF etc.), but
BCNF and 4NF suffice for most purposes.

10/23/2018

2

Boyce-Codd Normal Form

Definition:

A relation R is in Boyce-Codd Normal Form
(BCNF) if for every nontrivial functional
dependency X → A on R, X is a superkey of R.

BCNF Example

Consider our example relation schema in Figure 1:

One of the (non-trivial) functional dependencies we
identified was

instructor → office

Clearly, instructor is not a superkey of the relation.

Therefore, we say that the FD instructor → office
violates BCNF, and the relation schema is not in
BCNF.

Moving to BCNF

Our goal is a database in which every relation is in
BCNF.

Fortunately, there is a straightforward algorithm for
getting there.

 Find a relation schema not in BCNF

 Decompose it into two relation schemas,
eliminating one of the BCNF violations

 Repeat

(Details on next page)

Decomposition Algorithm

while some relation schema is not in BCNF:

 choose some relation schema R not in BCNF

 choose some FD X → Y on R that violates BCNF

 (optional) expand Y so that Y = X+ (closure of X)

 let Z be all attributes of R not included in X or Y

 replace R with two new relations:

 R1, containing attributes {X, Y}

 R2, containing attributes {X, Z}

Decomposition Notes

 The final step above is accomplished simply by
projection onto the attributes in R1 and R2. (Recall
that this may result in fewer tuples.)

 After decomposing, you will need to establish which
FDs now apply to R1 and R2, as well as determine their
superkeys, in order to determine if they are now in
BCNF.

 The optional step of expanding Y is recommended, as it
tends to result in fewer, larger relation schemas, and
may reduce the problem faster - e.g., consider
decomposing on instructor → office.

Decomposition Walkthrough

Let’s use the relation schema in Figure 1 as an example.

For this schema, we listed the following FD’s:

 instructor → office

 instructor → email

 {course_id, section} → instructor

 course_id → title

What superkeys do we have?

Answer: any superset of our only key, which is {course_id,
section}.

Which FD’s violate BCNF?

violates BCNF

violates BCNF

does not violate BCNF

violates BCNF

10/23/2018

3

Walkthrough 2

 Let’s pick our first violating FD to work with first:
instructor → office

 Next, expand the RHS as much as possible (we
want the closure of instructor):
instructor → {instructor, office, email}

 Now we decompose into two new tables, shown
on the next slide:
 R1 = πinstructor,office,email (R)
 R2 = πinstructor,course_id,section,title (R)

 We can now discard the table from figure 1

Tables After One Step

Instructor Course_id Section Title

Painter-Wakefield, Christopher CSCI403 A DATABASE MANAGEMENT

Painter-Wakefield, Christopher CSCI262 A DATA STRUCTURES

Painter-Wakefield, Christopher CSCI262 B DATA STRUCTURES

Mehta, Dinesh CSCI406 A ALGORITHMS

Mehta, Dinesh CSCI 561 A THEORY OF COMPUTATION

Hellman, Keith CSCI 101 A INTRO TO COMPUTER SCIENCE

Hellman, Keith CSCI 101 B INTRO TO COMPUTER SCIENCE

Hellman, Keith CSCI 101 C INTRO TO COMPUTER SCIENCE

Hellman, Keith CSCI 274 A INTRO TO LINUX OS

Instructor Office Email

Painter-Wakefield, Christopher BB 280I cpainter@mines.edu

Mehta, Dinesh BB 280J dmehta@mines.edu

Hellman, Keith BB 310F khellman@mines.edu

R1:

R2:

Walkthrough 3

 Table R1 is now in BCNF (yay!)

 Note this was not guaranteed by the algorithm –
we could have had other violating FDs

 Table R2 has a violating FD, though: course_id
→ title

Walkthrough 4

Decomposition of R2 via course_id → title:

course_id+ = {course_id, title}

Decompose into R3 and R4:

 R3 = πcourse_id,title (R2)

 R4 = πinstructor,course_id,section (R2)

Course_id Title

CSCI403 DATABASE MANAGEMENT

CSCI262 DATA STRUCTURES

CSCI406 ALGORITHMS

CSCI 561 THEORY OF COMPUTATION

CSCI 101 INTRO TO COMPUTER SCIENCE

CSCI 274 INTRO TO LINUX OS

Instructor Course_id Section

Painter-Wakefield, Christopher CSCI403 A

Painter-Wakefield, Christopher CSCI262 A

Painter-Wakefield, Christopher CSCI262 B

Mehta, Dinesh CSCI406 A

Mehta, Dinesh CSCI 561 A

Hellman, Keith CSCI 101 A

Hellman, Keith CSCI 101 B

Hellman, Keith CSCI 101 C

Hellman, Keith CSCI 274 A

R3:

R4:

Walkthrough Wrap-up

 Done!
 Three tables remain: R1, R3, R4
 All non-essential redundancy has been removed
 Each table now represents a fundamental entity:

 R1 = instructor info
 R3 = course info
 R4 = section info

 As a final note: this algorithm is not deterministic
– you can different decompositions following
different choices of FD to work with.

Next Time

 Multi-valued dependencies and 4NF

