
10/16/2018

1

CSCI 403 Database

Management

12 – Functional Dependencies

This Lecture

Discuss “goodness” of a database design

 Informal guidelines

 Objective measures

Informal Guidelines

1. Clear semantics
 Do your relations make sense as independent units?
 Do you have a clear separation of concerns?
 Did you do ER modeling beforehand?

2. Reducing redundancy
 Data should be stored once and only once (excepting

foreign keys)
 Redundancy leads to modification anomalies

3. Reducing NULLs
4. Disallowing spurious tuple generation

Example

Instructor Course
_id

Section Title Office Email

Painter-Wakefield,
Christopher

CSCI403 A DATABASE MANAGEMENT BB 280I cpainter@mines.edu

Painter-Wakefield,
Christopher

CSCI262 A DATA STRUCTURES BB 280I cpainter@mines.edu

Painter-Wakefield,
Christopher

CSCI262 B DATA STRUCTURES BB 280I cpainter@mines.edu

Mehta, Dinesh CSCI406 A ALGORITHMS BB 280J dmehta@mines.edu

Mehta, Dinesh CSCI 561 A THEORY OF COMPUTATION BB 280J dmehta@mines.edu

Hellman, Keith CSCI 101 A INTRO TO COMPUTER SCIENCE khellman@mines.edu

Hellman, Keith CSCI 101 B INTRO TO COMPUTER SCIENCE khellman@mines.edu

Hellman, Keith CSCI 274 A INTRO TO LINUX OS khellman@mines.edu

Figure 1: One possible relation storing Mines course information:

Redundancy

 Example has multiple issues of redundancy:
 Multiple sections, with redundant course id and title

information
 Instructor name and email repeated many times

 Cause:
 Two (or more) concepts have been combined into one

table
 Instructor
 Course info
 Section info

 These should be (somewhat) independent pieces of
data

Modification Anomalies

 A consequence of bad design

 Goes hand-in-hand with redundancy issues

 Three types:

 Insertion

 Update

 Deletion

10/16/2018

2

Insertion Anomaly

Insert a new faculty member in example table –
no course info yet

 What do we put in for course info?

 NULL values?

 Could violate constraints

 What happens when we want to add a course for this
faculty member?

 Dummy data?

Deletion Anomaly

Inverse of insertion anomaly:

What happens if we delete the last course
taught by an instructor?

Similarly, what happens to a faculty member’s
courses when they leave/retire?

Update Anomaly

 When updating redundant data, must
remember to update all instances

 E.g., suppose you are in an application
updating course info for CSCI 403
 You notice that CPW’s office info is wrong (e.g.,

maybe he moved)

 You edit the record to correct his office info

 Now, inconsistent data in different records!
Which is correct?

Spurious Tuple Generation

 Happens when data has been incorrectly factored
 There is no linking data (foreign keys)

 The linking data is incomplete

 (Somewhat contrived) example:
 Table mines_courses (instructor, course_id, section)

 Table mines_faculty (instructor, course_id, office,
email)

 Joining these tables on instructor and course_id will
yield spurious combinations of instructors with
sections they do not teach

Functional Dependencies

 Our primary tool for eliminating redundancy and
modification anomalies

 A kind of constraint between two sets of attributes in a
relation schema

 Definition:
Given a relation schema R and sets of attributes X and Y,
then we say a functional dependency X → Y exists if,
whenever tuples t1 and t2 are two tuples from any relation
r(R) such that t1[X] = t2[X], it is also true that t1[Y] = t2[Y].

 The lingo:
We say X functionally determines Y, or Y is functionally
dependent on X.

Functional Dependencies 2

 In other words:
If it is always true that whenever two tuples agree on
attributes X, they also agree on Y, then X → Y.

 Example:
If we assert that an instructor is always associated with
one office and email, then

{ instructor } → { office, email }

is a functional dependency (FD) on the example table in
figure 1.

X Y

10/16/2018

3

Functional Dependencies 3

Note:
FD’s are properties of the world that we impose on the data, not
properties of the data.
That is, finding FD’s is a design activity.
The result is a constraint on the data that is allowed in our database.

Example:
It may be that we have a particular set of courses data in which each
course_id is associated with one instructor. Then, for that data, it is
true that whenever a tuple agrees on course_id, it also agrees on
instructor. However, unless this is required to be true for any set of
data we can put in our database, we cannot say { course_id } → {
instructor}.

Types of Functional Dependency

 Trivial FD’s
 Trivially, X → X

 More generally, if Y ⊆ X, then X → Y

 Non-trivial FD’s
 X → Y

 Y ⊈ X

 Completely non-trivial FDs
 X → Y

 X ∩ Y = ∅ (No overlap between X and Y)

Non-Trivial FDs

 We are primarily interested in non-trivial and
completely non-trivial FD’s.

 In our figure 1 example, we might identify the
following completely non-trivial FD’s:
 instructor → office

 instructor → email

 { course_id, section } → instructor

 course_id → title

 Can you identify others?

Note the abuse of set notation here.
I just find it more readable.

Functional Dependencies and

Superkeys

 FD’s can be viewed as a generalization of the
notion of a superkey

 A superkey is a set of attributes which will
contain a unique subset of values for any tuple
in a relation.

 Thus, if X is a superkey of R, X → R.

 Alternately, if X → Y and X ∩ Y = R, then X is a
superkey of R.

Inference Rules

Allow us to infer additional FD’s from an existing set of
FD’s
 Splitting rule:

If A → {B1, B2} then A → B1 and A → B2

 Combining rule:
If A → B and A → C then A → {B, C}

 Transitive rule:
If A → B and B → C then A → C

Additional rules can be derived and can be found in your
textbook.

More set notation abuse here.
A, B, C, etc. are all sets. {B, C} is
the union of sets B and C.

Closures

Definition:
Given some set of functional dependencies F on a
relation schema R, and some subset of attributes A,
then the set {Bi : A → Bi } is called the closure of A
and is denoted A+.

Closures are useful in:

 Normalization

 Finding all superkeys of a relation schema

10/16/2018

4

Computing Closure

Algorithm:

Given set F of functional dependencies, and
some set of attributes A, compute A+:

Start with S = A. Trivially, A → S.

Repeat until no change:

if there exists an FD X → Y in F such that X ⊂ S,

then let S = S ∪ Y

A+ = S
Expands S while maintaining the
invariant A → S. The step follows
from the three inference rules.

Finding All Superkeys

 In short:

 Generate the power set of R – all subsets of attributes

 For each subset, compute the closure

 If the closure = R, then the subset is a superkey of R

 This algorithm is mostly of academic interest to
us, but could be used in automated software to
build a normalized database, when the functional
dependencies are inputted.

Next Time

 Normal forms & Boyce-Code normal form

 Decomposition algorithm

