CSCI 403
database management
14 – converting erd to a sql database

ERD to SQL Summary
In general:
- Entities \(\rightarrow \) tables
- 1:1 and 1:N relationships \(\rightarrow \) Foreign keys
- N:M relationships \(\rightarrow \) tables
- Multivalued attributes \(\rightarrow \) tables

7-Step Algorithm
Just follow the steps:
- Provided by book
- Some choices, but mostly deterministic
- Small examples along the way (you’ll get to practice with a real schema later)

Step 1 – Regular Entities
- Regular entity \(\rightarrow \) table
 - Use entity name or name of your choice
 - All simple attributes \(\rightarrow \) columns
 - No derived or multivalued
 - Only take components of a composite
 - Assign data types
 - Change name if desired
- Choose some key to be a primary key
- May get additional columns in later steps!

Step 1 Example

Step 2 – Weak Entities
Like regular entities, but:
- Take primary key from owning entity’s table:
 - Add to weak entity table
 - Make it a foreign key back to owning entity’s table
- Since weak entity has no key, only a partial:
 - Make primary key a combination of partial key and “borrowed” key from owning entity
Step 2 Example

```
name

building

contains

room

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>room_no</td>
<td>text</td>
<td>not null</td>
</tr>
<tr>
<td>building_name</td>
<td>text</td>
<td>not null</td>
</tr>
</tbody>
</table>
```

Primary key (building_name, room_no)
Foreign key (building_name) references building(name)

Step 3 – 1:1 Relationships

3 choices (depending somewhat on participation):
- Total participation on one or zero sides: create a foreign key
- Total participation on both sides: merge into one table
- Cross-reference table (discussed later - not recommended for 1:1)

Step 3 Example 1

```
assembly id

factory

stock number

assembly

1

sold as

product

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock_no</td>
<td>text</td>
<td>primary key</td>
</tr>
<tr>
<td>assembly_id</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>price</td>
<td>numeric</td>
<td></td>
</tr>
</tbody>
</table>
```

Foreign key (assembly_id) references assembly(id)

Step 3 Example 2

```\nnumber

country

name

passport

1

identifies

person

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssn</td>
<td>integer</td>
<td>primary key</td>
</tr>
<tr>
<td>passport_no</td>
<td>integer</td>
<td>not null, unique</td>
</tr>
<tr>
<td>country</td>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>
```

Step 4 – 1:N Relationships

2 choices:
- Take primary key from “one” side:
 - Add to “many” side table
 - Create foreign key
 - Cross-reference table (not recommended)

Step 4 Example

```
cwid

name

instructor

N

belongs to

dept

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwid</td>
<td>integer</td>
<td>primary key</td>
</tr>
<tr>
<td>name</td>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>
```

Foreign key (department_name) references department(name)
Step 5 – N:M Relationships

Only choice: cross-reference (xref) table
- Neither side can properly reference the other using a foreign key
- Create a new table whose entries represent connections between entries in the two tables
 - New table borrows primary key from each table
 - Each borrowed key is a foreign key back to original
 - Xref table also place for relationship attributes

Step 5 Example

Course id

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Counts toward

Major

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>major_name</td>
<td>text</td>
<td>not null</td>
</tr>
<tr>
<td>course_id</td>
<td>text</td>
<td>not null</td>
</tr>
<tr>
<td>reqd_or_elective</td>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>

Primary key (major_name, course_id)
Foreign key (major_name) references major (name)
Foreign key (course_id) references course (id)

Step 6 – Multivalued Attributes

Treat essentially like weak entity
- Make a table for attribute
- In place of partial key, use attribute
- Borrow primary key of owning table
- Make borrowed key and attribute together the primary key
- Make foreign key back to owning table

Step 6 Example

Cwid

<table>
<thead>
<tr>
<th>Cwid</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructor

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwid</td>
<td>integer</td>
<td>primary key</td>
</tr>
<tr>
<td>name</td>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>

Instructor_degree

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>cwid</td>
<td>integer</td>
<td>not null</td>
</tr>
<tr>
<td>degree</td>
<td>text</td>
<td>not null</td>
</tr>
</tbody>
</table>

Primary key (cwid, degree)
Foreign key (cwid) references instructor (cwid)

Step 7 – N-ary Relationships

Only choice: cross-reference table
As for N:M relationships, but using primary keys from all involved tables.

Up Next

- Next lecture: Relational algebra
- Reading: Chapter 8:1 – 8.5: “The Relational Algebra and Relational Calculus”
- Coming soon: Quiz on ERD