
2/4/2019

1

CSCI 403

Database Management

12 – Miscellaneous Topics

Topics

This lecture is for stuff I forgot or didn’t have time to
cover so far…

 Miscellaneous SELECT
 DISTINCT
 JOIN clause and outer joins
 SET operations
 WITH (Common Table Expression) queries
 Other stuff

 Bulk loading and COPY
 Workflow

2

DISTINCT

3

DISTINCT

 SELECT queries may return duplicate rows

 E.g.
SELECT instructor FROM mines_courses;

 DISTINCT keyword lets us remove duplicates:
SELECT DISTINCT instructor FROM mines_courses;

 Also, can use with aggregates (not all DBMSes):
SELECT COUNT (DISTINCT instructor) FROM mines_courses;

SELECT AVG(DISTINCT enrollment) FROM mines_courses;

(the last is a silly application, just for illustration)

4

JOINS

5

JOIN Clause

We’ve so far been using “WHERE clause” joins:

SELECT a.x, b.y from a, b WHERE a.z = b.z;

We can also use a JOIN expression explicitly:

SELECT a.x, b.y

FROM a INNER JOIN b ON (a.z = b.z);

6

2/4/2019

2

More JOIN

Can use with multiple conditions:

SELECT a.x, b.y

FROM a INNER JOIN b ON (a.z = b.z AND a.zz = b.zz);

Can use with multiple tables:

SELECT a.x, b.y, c.z

FROM a INNER JOIN b ON (a.foo = b.foo)

INNER JOIN c ON (b.bar = c.bar);

7

INNER JOIN Notes

 The INNER keyword is optional (INNER is the
default)

 Performance is same using WHERE clause or
INNER JOIN

 Choice between WHERE clause or JOIN clause
is completely up to you:
 Personal preference

 Readability (JOIN clause can get complicated with
many tables)

8

OUTER JOIN

 Inner joins only return rows that match join
condition:
 What if we want all rows from one or both tables?

 Outer join lets us get everything, pairing up rows
where possible.

 Example (in class):
SELECT mc.course_id, mc.section, mc.title,
mc.instructor, mcf.email, mcf.office

FROM mines_courses AS mc

LEFT OUTER JOIN mines_cs_faculty AS mcf

ON (mc.instructor = mcf.name);

9

LEFT and RIGHT

SELECT mc.course_id, mc.section, mc.title,
mc.instructor, mcf.email, mcf.office
FROM mines_courses AS mc

LEFT OUTER JOIN mines_cs_faculty AS mcf
ON (mc.instructor = mcf.name);

The above gives all rows from mines_courses (the left-hand
table in the join).

RIGHT does the opposite.

Note that OUTER is optional – LEFT and RIGHT imply OUTER.

10

FULL OUTER JOIN

As the name implies, gives all rows from both
tables in join, matching rows where possible.

Same example as above, replacing LEFT with
FULL (OUTER is optional again).

To see effects, first have to insert a bogus faculty
member into mines_cs_faculty…

11

Applications of Outer Joins

Great for finding missing data, e.g., data where a foreign
key is null, by using IS NULL in WHERE:

SELECT mc.course_id, mc.section, mc.title,
mc.instructor, mcf.email, mcf.office

FROM mines_courses AS mc

LEFT OUTER JOIN mines_cs_faculty AS mcf

ON (mc.instructor = mcf.name)

WHERE mcf.name IS NULL;

12

2/4/2019

3

Oracle Outer Joins

Oracle defines a special operator that allows left
and right outer joins to be created using WHERE
clause (very handy!):

SELECT a.x, b.y

FROM a, b

WHERE a.z = b.z(+); -- right outer join!

13

SET OPERATIONS

14

Union, Intersection, Difference

You can perform set operations on two or more SELECT
query results:

SELECT course_id, title, instructor
FROM mines_courses
UNION
SELECT 'CSCI999', 'CS Fun Fair', name
FROM mines_cs_faculty;

Column names come from first SELECT query.
Column types & count have to match.

15

Set Operators

Set union : UNION

Set intersection : INTERSECT

Set difference: EXCEPT

16

[ALL]

 By default, set operators imply DISTINCT

 This is because sets, mathematically, contain only
distinct units

 To avoid this behavior, add ALL keyword

SELECT …

UNION ALL

SELECT …

17

WITH

18

2/4/2019

4

WITH (Common Table

Expression) Queries
 An alternative to subqueries, also with some cool

applications
 Effectively, provides a temporary named relation

for use in a query
 Example:

WITH cs_courses AS (
SELECT * FROM mines_courses
WHERE course_id LIKE 'CSCI%'

)
SELECT DISTINCT course_id, title
FROM cs_courses
WHERE instructor = 'Paone, Jeffrey';

19

WITH (PostgreSQL extensions)

 WITH in PostgreSQL has some powerful
extensions:
 Can use INSERT/UPDATE/DELETE in CTE

 Gives an alternative to doing transactions (a later topic)
 RETURNING clause (PostgreSQL only) also useful here

 Can use with INSERT/UPDATE/DELETE

 Example:
WITH q AS (

DELETE FROM products WHERE fruit = 'apple'
)
INSERT INTO products
VALUES ('apple', 'FruitCo', 3.59);

20

RETURNING clause

(PostgreSQL only)

Since I mentioned it in previous slide:
RETURNING returns modified rows from an INSERT,
UPDATE, or DELETE:

DELETE FROM products
WHERE fruit = 'orange'
RETURNING *;

Very useful for capturing, e.g., result of serial
column default values after INSERT!

21

Recursive WITH

Recursion in SQL!

General form:

WITH RECURSIVE name AS (

<non-recursive SELECT query>

UNION

<recursive SELECT query (references name)>

)

SELECT …

22

Recursive Example

From our database (table from textbook):

WITH RECURSIVE emp_rec (padding, first, last, ssn) AS (
SELECT '', fname, lname, superssn
FROM employee
WHERE fname = 'Joyce' AND lname = 'English'

UNION ALL
SELECT er.padding || ' ', e.fname, e.lname, e.superssn
FROM emp_rec er, employee e
WHERE e.ssn = er.ssn

)
SELECT padding || first || ' ' || last FROM emp_rec;

23

OTHER STUFF

24

2/4/2019

5

OFFSET…FETCH…

Get some rows starting at some offset:
SELECT * FROM mines_cs_faculty

ORDER BY name

FETCH FIRST 5 ROWS ONLY;

SELECT * FROM mines_cs_faculty

ORDER BY name

OFFSET 5

FETCH FIRST 5 ROWS ONLY;

25

BULK LOADING

26

Bulk Loading

 Term for loading lots of data into database efficiently

 Compare to doing millions of INSERT statements…

 Typical workflow (sometimes known as ETL: Extract,
Transform, Load):
 Acquire data in text, .csv, JSON, or other format

 Preprocess if needed/desired using non-SQL tools

 Bulk load data as is (dirty, incomplete, incorrectly
formatted) into staging table(s)

 Postprocess if needed (clean up, format) using SQL

 Use SQL to load into final table(s)

27

Bulk Loading in PostgreSQL:

COPY

 COPY command in PostgreSQL SQL
 Fast bulk loading from various formats
 Lets DB administrators only load data from server

filesystem

 \COPY in psql
 Fast bulk loading across network
 Lets non-administrators bulk load from local

filesystem

 Other bulk loaders/ETL tools
 Commercial and free tools available
 Google “ETL postgresql”

28

WORKFLOW

Lessons learned the hard way

29

Dangers of Command Line SQL

 Databases are dynamic storage

 You can modify data quickly with SQL

 Everyone sees modified data immediately

 SQL is immediate, irrevocable

 What if you make a mistake?

 E.g., production database migration (new schema)

 Don’t do command line SQL except for
exploratory programming on dev DB!

30

2/4/2019

6

Scripts Are Your Friends

 Keep dev, test, production databases (at minimum)

 During development, write & test scripts on dev

 When time for a software release/database migration:
 Clone a new db from test

 Apply scripts

 Fix scripts

 Repeat as necessary

 Scripts go in your version control system (git)!!
 In theory, should be able to reproduce prod database

schema (not data, necessarily) from scratch by running all
scripts from beginning of project.

31

DBAs/SysAdmins Are Also

Friends

 Your production database should be backed
up nightly

 Not for crashes, necessarily, as SQL databases can
recover from those on their own

 Instead, need it to recover from developer
mistakes

 However, make sure DBAs/sysadmins test
backups regularly (DB backup is tricky!)

32

Up Next

 Next lecture:

 Database modeling and design

 Entity-Relationship Diagrams (ERD)

 Reading: Chapter 3, “Data Modeling Using the
Entity-Relationship Model”

33

