
9/11/2018

1

CSCI 403

Database Management

10

Subqueries IN

2

The IN Crowd

Another operator: IN
 Tests for presence in a list of values or tuples
 Can be used many places, but usually in WHERE
 Trivial examples:

SELECT 17 in (42, 99, 103);
?column?

f

SELECT 42 in (42, 99, 103);
?column?

t

3

IN in WHERE

SELECT course_id, section, instructor, title
FROM mines_courses
WHERE course_id IN

('CSCI261', 'CSCI262', 'CSCI999');

course_id | section | instructor | title
-----------+---------+--------------------------------+---------------------
CSCI262 | R01 | Anderson, Alex | DATA STRUCTURES
CSCI262 | R02 | Painter-Wakefield, Christopher | DATA STRUCTURES
CSCI262 | B | Painter-Wakefield, Christopher | DATA STRUCTURES
CSCI261 | B | Gruchow, Colten | PROGRAMMING CONCEPTS
CSCI261 | C | Paone, Jeffrey | PROGRAMMING CONCEPTS
CSCI261 | D | Paone, Jeffrey | PROGRAMMING CONCEPTS
CSCI261 | E | Schilling, Samuel | PROGRAMMING CONCEPTS
CSCI262 | A | Anderson, Alex | DATA STRUCTURES
CSCI261 | A | Gallegos, Lorenzo | PROGRAMMING CONCEPTS
CSCI262 | R03 | Painter-Wakefield, Christopher | DATA STRUCTURES

4

IN with Tuples

IN can also match tuples – ordered lists of values:

SELECT course_id, section, instructor, title
FROM mines_courses
WHERE (instructor, section) IN
(('Fisher, Wendy','A'),
('Han, Qi','B'));

course_id | section | instructor | title
-----------+---------+---------------+--------------------------
CSCI341 | B | Han, Qi | COMPUTER ORGANIZATION
CSCI250 | A | Fisher, Wendy | BUILDING A SENSOR SYSTEM
CSCI303 | A | Fisher, Wendy | DATA SCIENCE

5

SUBQUERIES WITH IN

6

9/11/2018

2

IN and Subqueries

Queries can return a list of values (or tuples).

We can substitute a query for a list:

SELECT * FROM mines_courses

WHERE instructor IN

(SELECT name FROM mines_cs_faculty);

7

A subquery, also known as a nested query.

IN and Subqueries

SELECT * FROM mines_courses

WHERE instructor IN

(SELECT name FROM mines_cs_faculty);

To interpret this, replace the subquery with the
list resulting from the subquery:

('Han, Qi', 'Painter-Wakefield, Christopher', 'Paone, Jeffrey', …)

8

Another Example

Here we match tuples:

SELECT * FROM mines_courses

WHERE (instructor, section) IN

(SELECT name, 'A' FROM mines_cs_faculty);

Of course, for this example we could instead do:

SELECT * FROM mines_courses

WHERE instructor IN

(SELECT name FROM mines_cs_faculty)

AND section = 'A';

9

Subqueries vs Joins

Subquery queries are often equivalent to join queries:

SELECT * FROM mines_courses
WHERE instructor IN

(SELECT name FROM mines_cs_faculty);

vs

SELECT mc.*
FROM mines_courses AS mc,

mines_cs_faculty AS mcf

WHERE mc.instructor = mcf.name;

10

Subqueries vs Joins: A Difference

x y

apple 42

banana 17

cherry 99

11

foo

why zee

42 2001-01-01

17 2002-02-02

42 2003-03-03

bar

SELECT * FROM foo
WHERE y IN

(SELECT why FROM bar);

x y

apple 42

banana 17

SELECT foo.* FROM foo, bar
WHERE foo.y = bar.why;

x y

apple 42

banana 17

apple 42

OTHER SUBQUERY SETTINGS

12

9/11/2018

3

What Can a Subquery Return?

 A table (a list of tuples)

 A single tuple

 A (scalar) value

 Nothing

13

Subqueries Returning a Table

This is partly interpretation: all four cases fall
under this category.

However, only some operators work with this
general case:

[NOT] IN

[NOT] EXISTS

[NOT] UNIQUE (not implemented in PostgreSQL)

14

EXISTS & UNIQUE

Unlike IN, EXISTS and UNIQUE do not compare
with expressions.

EXISTS returns true iff a subquery returns
anything:

SELECT * FROM foo

WHERE EXISTS

(SELECT * FROM bar WHERE why = 77);

15

EXISTS & UNIQUE

UNIQUE returns true iff a subquery returns
unique values only.

Both of these operators are more useful in
correlated subqueries (next section).

16

Subqueries Returning a Single

Tuple

A query returning a scalar value is a special case
of this.

A query returning nothing acts like a query
returning a tuple of NULL values.

These subqueries can be used in equality
comparison expressions (example next page):

17

Single Tuple Example

SELECT * FROM foo
WHERE y =

(SELECT why FROM bar WHERE zee = '2002-02-02');

x | y
--------+----
banana | 17

18

x y

apple 42

banana 17

cherry 99

foo

why zee

42 2001-01-01

17 2002-02-02

42 2003-03-03

bar

9/11/2018

4

Single Tuple Counterexample

SELECT * FROM foo

WHERE y =

(SELECT why FROM bar WHERE zee > '2001-01-01');

ERROR: more than one row returned by a subquery
used as an expression

19

x y

apple 42

banana 17

cherry 99

foo

why zee

42 2001-01-01

17 2002-02-02

42 2003-03-03

bar

Non-Scalar Tuple

If you have multiple value tuples (not just a
scalar as in previous example), use parentheses:

SELECT …

FROM tablename

WHERE (expr1, expr2, …) =

(SELECT sq_expr1, sq_expr2, …);

20

Scalar Value

Scalar values can be used in any expression:

SELECT * FROM foo

WHERE y >

(SELECT why FROM bar WHERE zee = '2002-02-02');

Doesn’t have to be in WHERE, either:

SELECT

100 + (SELECT why FROM bar WHERE zee = '2002-02-02');

Again, a “nothing” result is interpreted as NULL.

21

CORRELATED SUBQUERIES

22

Correlated Subqueries 1

In a correlated subquery, the subquery accesses
attributes from rows in the outer query.

Here’s an example from Wikipedia:
SELECT employee_number, name

FROM employees AS e1

WHERE salary >

(SELECT AVG(salary) FROM employees AS e2

WHERE e2.department = e1.department);

23

Correlated Subqueries 2

SELECT AVG(salary) FROM employees AS e2

WHERE e2.department = e1.department

This subquery uses an operator we haven’t covered yet,
which provides an aggregate value over a table.

AVG(salary) gives the average of the salary values in all rows
matching the WHERE condition.

24

9/11/2018

5

Correlated Subqueries 3

SELECT employee_number, name

FROM employees AS e1

WHERE salary >

(SELECT AVG(salary) FROM employees AS e2

WHERE e2.department = e1.department);

The highlighted comparison shows the correlation.

Conceptually, a correlated subquery is run once for every
row in the outer query.

The expression e1.department, then comes from some row
in the outer query.

25

Correlated Subqueries 4

SELECT employee_number, name

FROM employees AS e1

WHERE salary >

(SELECT AVG(salary) FROM employees AS e2

WHERE e2.department = e1.department);

So what is this doing?

For each employee:

get the average of salaries in the employee’s department;

if the employee’s salary is greater than average, include it

in the result

26

Another Example

Here’s an example from the csci403 DB:

SELECT instructor, course id, section

FROM mines_courses AS mc1

WHERE course id IN

(SELECT course id

FROM mines_courses AS mc2

WHERE mc2.course id = mc1.course id

AND mc2.instructor <> mc1.instructor);

27

Another Example 2

The above query is equivalent to:

SELECT instructor, course id, section

FROM mines_courses AS mc1

WHERE EXISTS

(SELECT course id

FROM mines_courses AS mc2

WHERE mc2.course id = mc1.course id

AND mc2.instructor <> mc1.instructor);

28

SUBQUERIES IN OTHER

CLAUSES

29

Subqueries in FROM

Not sure why you’d want to, but this is legal:

SELECT course_id FROM

(SELECT course_id, instructor

FROM mines_courses) AS mc

WHERE mc.instructor LIKE 'Painter%';

30

9/11/2018

6

Subqueries in SELECT and SET

We saw an example using a subquery returning
a scalar in a SELECT clause expression.

More usefully, we can use single-tuple subquery
results in a SET clause in an UPDATE query
(especially, with correlation).

This gives us something like a join that works
with UPDATE!

31

Subquery in SET Example

From the PostgreSQL docs:
--Update contact names in an accounts table to
match the currently assigned salespeople:

UPDATE accounts SET (contact_first_name,
contact_last_name) =

(SELECT first_name, last_name

FROM salesperson

WHERE salesperson.id = accounts.sales_id);

32

Up Next

 Next lecture:

Grouping and aggregation.

33

