This Lecture

Introduction to Big Data and NoSQL.

3 “V’s” of Big Data
- Volume – Terabytes (or more) per day, rather than mega- or gigabytes.
- Velocity – lots of events/second – e.g., high frequency stock trading
- Variety – complex types of data (possibly poor fit for relational schemas)

NoSQL
- “Not only SQL”
 - Scalability – online expansion of data storage
 - Availability – multiple replicated nodes with failover
 - Faster reads
 - Tradeoff – eventual consistency instead of immediate
 - Sharding – partitioning of data across nodes (with clever client routing)
 - Key access – fast access via object ids/references
 - No schema – semi-structured, self-describing data types (JSON, XML)
 - Less powerful/query languages – simple CRUD (Create, Read, Update, Delete) interfaces
- No joins!

Categories
- Document-based – typically stores JSON documents, with a unique id for each document, and fast lookup given id
 - MongoDB is the leading example
- Key-Value store – fast access by key to a record, which can be any type of object
 - Cassandra, Redis, Voldemort, many more
- Column-based – more SQL-ish, but data is stored by column, not rows
 - Google BigTable, Apache Phoenix, etc.
- Graph-based – stores nodes and edges of a graph structure
 - Neo4j, etc.; also see SPARQL

CAP Theorem
- Consistency
 - Here meaning among replicated nodes – not the same as the ‘C’ in ACID
- Availability
 - Every request gets an answer
- Partition tolerance
 - Database keeps functioning even if network is partitioned into two or more subnets
CAP Theorem: Only possible to guarantee 2 of 3 in distributed systems with data replication. Controversial.
Example: Eventual Consistency

- Recall ACID (atomicity, consistency, isolation, durability)
 - Expensive in distributed database systems
 - Lose performance advantages
- NoSQL may opt for eventual consistency
 - Propagation of transactions to distributed nodes (still fast, but can result in interleaving transactions with temporarily inconsistent data)
 - “If no new updates are made to a data item, eventually all reads of that data item will return the last updated value”*

NewSQL

- RDBMS with scalable performance of NoSQL, keeping ACID guarantees
 - Primarily oriented towards OLTP (online transaction processing)
 - Lots of small reads/writes
 - Seldom large table scans or joins
 - Think banking
 - Uses SQL
 - New underlying technologies, e.g., distributed, shared-nothing clustering, hardware-assisted clock synchronization
 - Google Spanner, CockroachDB
 - New optimized SQL engines for existing databases
 - MySQL Cluster, TokuDB

Next Time

- MongoDB