

Two-Tiered Mapping Systems
A Look Into Database Design

Colorado School of Mines

CSCI-370 - Advanced Software Engineering

Summer 2019

Team Uber

Jerry Bui

Nicholas DeCarlo

Casey Miller

Demonna Wade

Table of Contents
Problem Definition Given by Uber 3
List of the Functional Requirements 4

RESTful API & GUI & Ingest 4
Getting Business layer to work 4
DAO (Data Access Object) to work with MySQL and In-Memory Data 4
Replication and Consistency 4

List of the Non-Functional Requirements 5
Potential Project Risks 5

Technical 5
Skill 5

Definition of Done 5
System Architecture 6

Service Summary 6
Business Layer Logic Cycle 7

Technical Design 8
Simple Client Watcher Program Structure 8
UML Diagram of ZooKeeper 8
Database Format 9
.csv File Example 9
Representation of Recursive Definition of S2 Cells 9

Project Risks 10

Elements of Software Quality Plan 10
Element 10
Code Quality Implementation 10

Ethical Consideration of Improper Quality Assurance 11

Initial Testing and Hypothesis 11

Reiterated Performance Testing Results 11
Machine Used: 12
Results of our Testing: 12

Summary of Testing 12

Results of Usability Tests 13

Conclusion and Future Work 13

Lessons Learned 13

2

Problem Definition Given by Uber
Uber is an international ride-sharing company. They match drivers with people who need rides
at a rate of 15 million rides per day. They also provide mapping data to all of their customers,
and due to their size, they have to provide 1.3 gigabytes of mapping data per second. Because
of this, the database that provides this data must be designed to handle the heavy flow. Uber
has tasked us to deliver a stateless, REpresentational State Transfer (RESTful) Service that is a
two-tiered database. A RESTful API Service is a lightweight implementation of HTTP; RESTful
services are stateless, which means they do not store information about the client and they treat
requests individually. We used HTTP GET as the primary means of communication between the
user and Memory DAOs, and between the Memory DAOs and the SQL DAO. This database
should be designed in such a way that a larger version of it could handle the massive amounts
of data that Uber needs to deliver to its customers. The first tier (a persistence layer) stores data
on disk, handles all writes, and act as a source of truth in the system. The second tier (a service
layer), should be a horizontally scalable. This means that if we add more local machine’s to our
service, the faster our system would be able to output data. The local machine is commonly
referred to in our report as the in memory DAO.

Depiction Communication Between the Local Machines and Data Server

3

List of the Functional Requirements

1. RESTful API & GUI & Ingest
a. Application / GUI is fully functional with showcasing names of landmarks for

designated ‘rectangle’ area
b. The application / GUI must remain ‘stateless’ (information should not be shared

through the server)
c. Application allows user to add more landmarks to the map; afterwards, the

landmarks should update and then be visible to all users. (These points are
added to the persistence layer)

2. Getting Business layer to work
a. The business layer must interpret data input via the API and use that to generate

a mySQL request.
b. The business layer must interpret the results of a mySQL request and sends data

forward to the API layer in a data type the API understands.
c. The business layer must categorize the points by ‘bucketing’ them into S2 cells, a

grid system used to sort locations on a globe.
3. DAO (Data Access Object) to work with MySQL and In-Memory Data

a. Our DAO consist of two databases, in which the in-memory database requests
data from the MySQL database.

b. The data used in our databases must be a manageable sample size of data so
that we can incorporate a specific area of target.

c. Request data from In-Memory storage “system” and sends data forward to the
Business layer to be processed.

4. Replication and Consistency
a. All machines in the ‘in memory’ layer must output synchronized data even though

they may have been updated at different times.
b. All machines must be synchronized to the data of the machine that has gone the

longest without being updated.

4

List of the Non-Functional Requirements
1. Final service should be packaged using Maven
2. All code should be written in Java
3. Performance should scale with number of working machines
4. MySQL is the recommended database - but PostgreSQL to be used: CPW’s Server
5. Points of data should be categorized using S2 Cells (S2 Cells are generally used in

mapping systems to sort the surface of a sphere into many rectangles)
6. ZooKeeper should be used for replication and communication between machines
7. Dropwizard should be used to build a RESTful API

Potential Project Risks

1. Technical
a. Developing the database
b. Maintaining multiple machines for testing

i. Testing in-sync memory
ii. Multiple inputs to multiple machines at the same time

c. Consistent data type communication between the layers
d. Setting up ZooKeeper correctly to handle the multiple machine communication
e. Efficiently giving each machine the same starting data set
f. Measuring the timestamps between sending and receiving data

2. Skill
a. Limited MySQL knowledge
b. Limited Zookeeper knowledge
c. Limited Maven packaging and dependency knowledge
d. Limited understanding on “stress testing”

Definition of Done
1. Demonstrable performance increase

a. Show that the multi-tier service is significantly faster than a service that requests
data directly from a database.

b. Show that our service gets faster as the number of in-memory machines is
increased.

2. Package deliverable of the product
a. Our project should be packed into one jar file for ease of use

5

System Architecture

Service Summary
Each tier has an available RESTful API Service that helps the users communicate with different
systems such as: Java, ZooKeeper, and PostgreSQL. The service is made up of three layers:
API layer, Business layer and the Data Access Object (DAO) layer. A DAO is just a Java object
that delivers data from a database. If the service exists on an in-memory machine, which are all
the machines that don’t communicate directly with the database, the DAO layer utilizes the
In-Memory DAO. Otherwise, the DAO Layer requests the PostgreSQL database. The business
layer consists of a functional logic to decipher which tier the service exists in; the business layer
then handles the DAO request properly. The business layer also connects to ZooKeeper, which
enables each of the local machines to compare their current data state and retrieve updates if
required. The API layer consists of a means to ingest data and a GUI to intake user commands.
Dropwizard is being used to help create an easy and quick to use RESTful API.

Design Challenges

For the business layer to determine which type of machine it is running on, we had it read from
configuration files. Since all Memory DAO machines cannot update instantaneously, they often
have varying amounts of data until all are synchronized. They still must produce the same
results when queried at any given point in time. This required ZooKeeper to restrict newly
updated machines from outputting their newest data points.

6

Business Layer Logic Cycle
The business layer is designed to execute upon an event request. As the user requests
information using the API layer, the business layer determines the course of action. Depending
on which machine the data is requested from, the business layer decides whether or not to
make a “In-Memory” DAO Request or “PostgreSQL” DAO request. Once the DAO layer
retrieves that data, the business layer properly handles the results and sends it back to the API
layer to be rendered to the user. While this cycle continues, ZooKeeper constantly receives
updates to maintain data consistency. So far, the team was able to design a simple client
watcher that looks to ZooKeeper for data updates.

Design Challenges

The communication with ZooKeeper required an intricate design. We must understand when,
and how often, the service should be “pinging” ZooKeeper. Maintaining a consistent data “log”
amongst several local machines is also another design trouble point. The local machines need
to output identical data even when one machine has more updated versions; in this instance, we
would only be able to output the most recently collective version.

One important final deliverable was to prove that when more ‘in memory data’ devices are
added to the system, the system’s speed improves drastically. To demonstrate this, we
performed stress tests on our system when it has different numbers of in memory data devices
and compared how each of them performed.

In addition to testing the speed with different amounts of ‘in memory’ devices, we also
demonstrated a difference in speed when the business layer gets data from the PostgreSQL vs
from the ‘in memory data’ devices.

7

Technical Design

Simple Client Watcher Program Structure
This is a UML diagram that describes the class structure for communicating with ZooKeeper.
Each packaged service has these classes available to accomplish “in-sync” data retention.

UML Diagram of ZooKeeper

Design Challenges
Determining the exact data to be managed by ZooKeeper was a challenge. We followed the
clients recommendation and used a “watermark” for each machine instance. The “watermark”
would represent the current data status. Allowing ZooKeeper to maintain this information
permitted each instance to know that amount of data the other instances have to ensure data
consistency..

8

Database Format
The information and data being used for this portion of the project is given from OSM
(OpenStreetMaps). OSM is a free open source technology that provides a large amount of data
pertaining to the world’s road networks. We developed a simple program that can parse through
an .osm file and output a .csv file with only the information we needed. The six columns
correspond to the following features of each landmark: ID, landmark name, type of landmark,
the latitude, longitude, and S2 Cell. These features comprise the data our database stores
about each landmark.

.csv File Example

Representation of Recursive Definition of S2 Cells

9

Design Challenges
To reduce the time it takes for our database to process a query, we indexed our database by S2
Cell. This makes it so that only the landmarks around the requested region are evaluated to see
if they are within the region. Since S2 cells are defined recursively, there are multiple different
levels of S2 cells that we could use. We chose a level by moving up/down to different levels until
our database requests were gaining efficiency from being indexed by S2 Cell.

Project Risks
The tasked projected does not have any direct risk because the client stated the prototype will
not be used directly. The code written we wrote will not be implemented in a “true” functional
system. The following is an excerpt from Uber’s legal statement given to us by our client: “This
project will be used as a training, classroom exercise for the team to learn from. There can be
no direct benefit for the client because of the work being done cannot be replacing any full-time
work that can be done at the client’s company”. Since our project will never be used, it has no
real risks.

Elements of Software Quality Plan

Element Code Quality Implementation

Unit Testing White box testing is being used to test the internal
structure/design/implementation of the following code units. Test cases
are derived using inputs and determining appropriate outputs. Each code
unit is being tested for proper functionality and intended use. Tests do
not cover value but primarily focuses on tests that impact the behavior of
the service.

1. API
2. Business Layer
3. ZooKeeper
4. Data Parsing
5. SQL Database

Interface Testing Used to verify that all code units work in union when integrated. Test
cases are derived at the level of scope of the service, and are only
passed if all units of code are individually correct. Interface testing is to
be done only once all code has been unit tested. The focus is towards
verifying that all parts of the service fit together.

1. API and Business Layer
a. Testing to make sure the data the API outputs can be

read by the business layer, and vice-versa.
2. Business Layer with ZooKeeper

a. Testing that In-Memory Java data types are being used to
communicate configurations and data points to
ZooKeeper.

3. Business Layer with Database

10

a. In-Memory Java data types are being used to properly
query the database for information to be returned to the
API.

4. Database with Parsed Data
a. Testing that our method of parsing data outputs the data

in a format that can be read into the database.

Security Testing Data available in the database should not be directly accessible by an
end-user without proper credentials through the web UI. This is to ensure
the service is free from any vulnerabilities, threats, and risks that may
cause a big loss. Through the web UI, the end-user should only be able
to add data points and unable to change or alter data points. Using
security auditing, team members review lines of code for security flaws in
querying data and manage this by testing the PostgreSQL Server in the
command line.

Code Reviews Before a large functionality can be added to the code baseline, a code
review must be conducted with the team. The person committing
changes is required to share the knowledge about the improvement and
detail where the addition is to be added. The reviewers must be able to
understand the programming technique and contribute to code
improvement and consolidation of the change. Overall, there should be
consistency in the code base and comments to make sure the code is
easy to read and understand. The goal should be to help reduce bugs
and unused code.

Ethical Consideration of Improper Quality Assurance
Since our client does not actually plan on using our service, there is no real ethical
consequence to poor quality assurance. But if the client were to depend on the development of
the team’s prototype, the poor quality assurance would result in:

1. Inefficient transportation and travel
2. Unreliable information
3. Misuse of end-user security information

Initial Testing and Hypothesis
When our group was first given our project, we studied and learned about multi-tiered systems
in order to have a better understanding of what it is capable of. Our group came up with the
hypothesis that with more systems implemented, the faster the queries would be returned.
However, after some initial testing with our code, we realized that the single tiered system was
doing better than our multi-tiered. We found that replicated ZooKeeper connections were
restricting performance. With that in mind we revisited our code, and reiterated our design and
tested thoroughly for any hiccups that could be caused that would showcase the performance
issue of multi-tiered vs. single tiered.

11

Reiterated Performance Testing Results
After carefully running both systems at the same time, our group was able to measure the
capabilities of both systems when running 10 request within 10 seconds. The outcome of the
test depends on the computer hardware. Each test returns a map of data points within a
randomly selected region of our data. The “Single” DAO test uses one database access point to
retrieve data. The “Multi-Tiered” DAO used test uses some number (1-4) of in-memory data
access points to retrieve data.

Machine Metrics:

Kernel Name Linux

Amount of CPUs 8

CPU MHz 3309.187

Amount of Sockets 1

Amount of Cores per Socket 4

Amount of Threads per Core 2

Results:

DAO Used Test
1

Test 2 Test
3

Test 4 Average

Single 1821 2041 1742 1635 1809.75

Multi-Tiered (1 machine) 3549 3601 3647 3622 3604.75

Multi-Tiered (2 machine) 3850 3794 3726 3880 3812.5

Multi-Tiered (3 machine) 3831 3438 3828 3744 3710.25

Multi-Tiered (4 machine) 2328 2196 2200 2272 2324

Summary of Testing
The final testing of our program clearly shows that, multi-tiered machines work better than single
tiered machines. We also partially show that the project is horizontally scalable: with more

12

added ‘machines’ to the system, the more productivity overall the system will have until a
breaking point based on the computer specifications is reached. In the above tests, there is an
improvement from one machine to two machines, but after that, the performance decreases.
This is because the computer the testing was done on was unable to run more than two
machines without the test results being impacted. The computer was simply bogged down
because it had to run so many machines that it could not quickly retrieve data from all of them.

Results of Usability Tests
The client made it very clear to us that our software would never be used by anyone except
ourselves. Our only deliverable is a report of our testing results comparing our two data
systems. Because of this, the software is only used by the creators, making usability tests
unnecessary; it is sufficient as long as we can understand it.

Conclusion and Future Work
Within our scope and given timeline for our project, our group sought out to deliver a
data-processing service and the results of product testing of a two tiered system that stores map
information. The results for the product testing can lead towards the transition of multi-tiered
systems where data is trinkled from an original source into local machines that can then output
their systems for general use.
Our user interface does what is expected: generate areas of interest and allow users to create
points on a given map all communicating with a local or server database.
Since a lot of this management of data required us to sign in into our PostgreSQL server
provided by the school, we were able to create a code that would securely and keep usernames
and passwords. However, within product testing and implementation of ZooKeeper, we found
ourselves manually typing in our passwords multiple times; our group ended up hardcoding a
superuser and pass to access the database. We did not have time to implement an automatic
testing environment for our systems. We still ran unit tests by hand, but since there were many
independent systems and they don’t update often, automatic tests were not worth the effort.

Lessons Learned
● Maven is an incredibly powerful, albeit sometimes frustrating tool, for compiling projects.

Getting Maven initially set up was challenging, but it made importing external libraries
much simpler. It also got rid of a lot of potential headaches when we needed our jar files.

● When stress testing our data service we learned that one must be very cautious when
writing bash scripts. Instead of pinging our database for data and disregarding it 4000
times, we accidentally pinged our database and saved the data into 4000 different files.
This caused immense lag and memory issues. Writing a bash script wrong can cost the
programmer a lot.

● PostgreSQL is a limited manageable database server that could have been easily
replaced with any other type of SQL service such as MySQL, however we used
PostgreSQL as it was a free option that was given by our academic advisors.
PostgreSQL was said to be able to copy .csv files and put them into a data table for use.
However, once we parsed data from our java file, we had a hard time using the \COPY

13

command in our Java program (Java is able to implement and connect to the
PostgreSQL server and run commands) since Java had an issue reading the ‘\’ within a
string order. Our group ended up opening the datatable in the command line and running
the \COPY command there. With other resources (MySQL, Microsoft SQL, or Amazon
Web Services SQL) we would’ve been able to connect through Java and run a simpler
command in order to copy .csv data into a datatable and have it run where users could
implement their own .csv files if they were correctly formatted. Later iterations of our
program are able to parse OpenStreetMap files and insert the data directly with one
INSERT command, using no CSV intermediate.

14

