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1.0 Introduction 
 
Sunlight Aerospace  is an aerospace company focused on solar airborne communication. 
Specifically, Sunlight Aerospace  is working towards the development of High Altitude Long 
Endurance (HALE) networks. Implementations of these HALE networks by other companies 
involve the use of a single, large, solar powered aircraft; Sunlight Aerospace  is taking a novel 
approach by developing a fleet of small unmanned aerial vehicles (UAVs) that work together to 
achieve the same long endurance goals. By having many aircraft working together in a 
drag-efficient formation, loss of power can be avoided and the aircraft can stay in the air longer. 
Because a strict aircraft formation must be maintained to achieve this, the need for systems to 
identify the relative location of UAVs in the fleet is paramount.  

This project’s objective was to develop a Situational Awareness Sensor (SAS) to find, identify, 
and compute the relative location of a leader UAV in a live video feed taken from a follower 
UAV. Initial requirements for the SAS included running on specific hardware (Raspberry Pi 3 
B+ with Pi Camera), achieving a reporting framerate of 20 Hz, and identifying and giving 
distance estimates of the UAV up to 10 meters away while maintaining distance estimates 
accurate to within 1-2 cm. These requirements were adjusted later with the help of the client to 
reflect limitations of the provided hardware and time constraints. Instead, the final requirements 
of the project became to provide a proof of concept of the requested features by creating a 
system with the best possible frame rate and best distance estimation accuracies possible on 
limited hardware; this was done with the knowledge that better hardware could improve the 
framerate and processing speed of the system in the future.  

 
2.0 Requirements 
 
2.1 Functional Requirements 
 
The high level functional requirements for this system can be divided into two pieces: 

1. A desktop environment where a chosen object detection algorithm can be trained on 
available UAV video data 

2. An executable that runs real time analysis on a UAV video stream and can be updated 
with new object detection parameters, networking parameters, and different cameras 

To accomplish these high level requirements, additional functional requirements are as follows: 
● Be able to train and use a chosen object detection algorithm to identify and locate a 

model SZD-45 OGAR in image  
● Use/create identification system to differentiate between members of the swarm  
● Use pose estimation methods to find relative position of identified leader aircrafts 
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● Create an output feed that provides swarm members with associated locations and 
identification using UDP Protocol  

● Transfer information to specific IP address and port 
● Identification and detection of objects should hit a target of 70% while in frame [1] 
● Identification of distances should hit a target of being within 1 meter of true distance 
● An ideal pose estimation reporting rate of 20 Hz or as fast as possible 

 
2.2 Non-Functional Requirements 
 

● The solution must be implemented on a Raspberry Pi 3 Model B+ 
● The live video feed has been obtained from a Raspberry Pi 1080p camera 
● File sharing was  done through the encrypted platform Sync 
● GitHub was used for version control for code 
● Python was used for development 

 
2.3 Deliverables  

The product was delivered as two separate components. The first components were delivered  as 
a Raspberry Pi and camera system. This Raspberry Pi includes the software required to identify 
the leading aircraft and its relative location. Additionally, it implements the ability to transmit 
this information over UDP and log it to CSV files. The software component of the project was 
delivered via Github in addition to what is loaded on the Raspberry Pi. This portion of the system 
includes the neural network, training interface, executable analysis script, and network interface 
to ensure that all the configuration files are made and trained properly. 
 
3.0 System Architecture  
 
The Situational Awareness Sensor can be thought of in two parts: the real time system and the 
training/configuration/testing system. The real time system is what runs on the Raspberry Pi on 
the UAVs in the air. The purpose of this part of the system is to detect or track, identify, and 
estimate the pose of the UAV in the live video feed. Additionally, this part of the system must 
communicate and log this information. Thus, the real time system is split into five sections: 
detection, tracking, identification, pose estimation, and communication. Each of these sections is 
described in detail in the below architecture discussion as well as the Technical Design section. 
 
The training/configuration/testing system is meant to be run on a computer on the ground, before 
and after in-flight use. It is recommended to run on a computer with a GPU, as this portion of the 
system is very computationally intensive. This section is also broken up into subsections, 
described below as well. 
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The training/configuration/testing system, as shown in Figure 1, was made to create the 
configuration files for the system, train the neural network used within the system, and run tests 
on the system. The configuration files were made from a desktop environment and correspond to 
the camera calibration, identification configuration, the neural network training and the object 
configuration. The camera calibration is specific to each camera and must be done on an 
individual basis to ensure that they are all providing undistorted images. If the images are 
distorted, the radial distortion will cause errors in the bounding boxes of the images and give 
incorrect estimations on distance. The identification configuration is made using a simple Hue 
Saturation Value (HSV) masking suite that allows for the specification of values that are allowed 
to be seen through filtering of the camera feed. These hues are specifically correlated to an 
identification number assigned to each of the aircrafts. The neural network model, currently 
working from a darkflow Tiny YOLO version 1 model, was trained using pre-labeled images. 
The object configuration details in the dimensions of the UAV, for our purposes the model 
SZD-45 OGAR.  
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Figure 1: Training/Configuration/ Architecture 
 
The real time system architecture can be seen in Figure 2. This system is made up of many 
modules and utilizes the configuration files created from within the configuration architecture 
described above. In this diagram you can see modules that correspond to the different 
subsections of the real time system: detection, tracking, identification, pose estimation, and 
communication. 
 

 
Figure 2: Real Time System Architecture 

 
4.0 Technical Design 
 
The following subsections describe details behind the real time and testing/configuration/training 
portions of the system.  
 
4.1 Real Time System 
 
4.1.1 UAV Detection 
 
The UAV detection system takes in a raw video feed as input and outputs bounding boxes 
around detected objects within each frame of the video. A graphical example of this output can 
be seen in Figure 3 below. 
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Figure 3: Example output from the object detection 

 
The UAV detection system uses a neural network to identify the UAV model and LEDs that are 
attached to the aircraft from the live video feed images. To customize the neural network for this 
project, first the most suitable neural network model for the project’s functional requirements 
was chosen, and then the model was trained on a dataset created by the project team.  
 
The You Only Look Once (YOLO) neural network model was chosen for this project due to its 
ability to run in real time speed, unlike most other models. Additionally, a lightweight version of 
YOLO, Tiny YOLO is available, which is significantly faster but slightly less accurate than the 
full-version YOLO. This project uses Tiny YOLO version 1 for the neural network model.  
 
In order to train a neural network to accurately identify objects, a minimum of 2000 instances of 
the object in training images are recommended. Training data included 2740 instances of the 
Ogar model and 8160 instances of LEDs. The neural network framework used to train the Tiny 
YOLO neural network is Darkflow, which is a Python port of the open source framework 
Darknet. Training was performed until the average loss--the inconsistency between the predicted 
and actual values--was at approximately 2.  
 
4.1.2 UAV Tracking 
 
To speed up the system, the computationally intensive object detection was supplemented with 
object tracking. Object tracking differs from object detection in that it uses an initial position of 
an object in a frame to follow the object’s movement rather than finding an object in an image. 
As many types of object trackers are purely mathematically based, object tracking can be 
significantly faster than object detection, which uses a neural network. With the addition of 
object tracking, the system is approximately 5 times faster. 
 
The OpenCV library provides several different tracker modules for object tracking. Kernelized 
Correlation Filters (KCF) object tracking looks at direction of change between frames to update 
locations and has better speed and accuracy than other OpenCV trackers. This is the tracker that 
was chosen for the SAS system. Each time object detection finds the Ogar or LEDs, KCF 
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trackers are initialized to track the identified objects. Object detection is immediately run again 
on a separate process while the previously identified objects are tracked until a new detection is 
available. The usage of the trackers allows the location of the Ogar and LEDs to almost 
constantly be known and for the slow speed of object detection not to hinder the overall system’s 
performance 
 
4.1.3 UAV Identification 
 
In order to identify which specific fleet member is detected by the object detector/tracker, a 
system to differentiate between UAVs is necessary. This was done using colored LEDs added to 
the tail of the UAVs, whose locations are poinpointed during the UAV detection/tracking portion 
of the system. Cropped images of these LEDs are fed into a color identifier that applies color 
Hue Saturation Value (HSV) masks to the image. For this application the applied masks are red, 
green, and yellow; more masks can be created and added using the mask creator discussed in the 
configuration system section below. The masks created are made up of an array of numbers, 
either 1 when the color they are looking for is present in the pixel or 0 when not present. 
Whichever mask contains the most 1s corresponds to the correct ID of the plane, and a numeric 
value corresponding to that ID is returned.  

 
Figure 4: Plane Identification Logic 

 
4.1.4 UAV Pose Estimation 
 
Once the UAV is detected and identified within the fleet, the system must determine an 
estimation of how far away the UAV is from the camera. Three different calculations are used to 
estimate this distance. 
 
The first method is a Perspective-N-Point (PNP) calculation using the LEDs identified on the 
UAV. To do this OpenCV’s solvePnP function uses the known distances between 4 or more 
points, the location of the 4+ points within the image, and the intrinsic properties of the camera 
to find the relative 6D pose, distance coordinates, and rotation matrix of the object within the 
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world frame. More information on PNP and its application for close formation flight can be 
found in [2]. 
 
The other two methods use the size of the bounding box around the plane returned from the 
neural network and the distance between rudder LEDs to estimate position. These methods use 
identical calculations based on known properties of the camera with different reference points 
located on the UAV. The formula used can be found in appendix section 2 
 
The known length corresponds to the width or height of the UAV in meters for the box estimator. 
For the point estimator it corresponds to the distance between the left and rightmost rudder LEDs 
in millimeters. The perceived length corresponds to the length or height of the received bounding 
box in pixels for the box method. For the point method this corresponds to the distance in points 
between the left and rightmost LED. 
  
All other variables in this calculation are constants determined from the camera calibration or 
known values based on the camera used. The focal length is a property of the camera that 
represents how sharply light converges through the lens. This is calculated for our image size 
using the formula shown in appendix 7.3. 
 
The image length is the resolution (height or width) of the input image in pixels. 
The sensor size is a known property of the camera being used. For example the Raspberry Pi 
camera used in this case has a sensor size of 3.67 mm [4]. 
 
4.1.5 Communication and Logging 
 
Once the UAVs identification within the fleet and relative distance has been found, that data 
must be sent wirelessly to the flight computer of the UAV. Additionally, that data must be 
logged locally to CSV files.  
 
For the communication with the flight computer we are creating a peer-to-peer, ad-hoc WiFi 
network between the flight computer and the SAS. The information is sent as a string over User 
Datagram Protocol (UDP) to the flight computer. As the Raspberry Pi is not able to process the 
information at the desired framerate, the sender had to be designed to send the most recent 
information at 20Hz using shared memory and multiprocessing.  
 
For logging the SAS output data, a csv writer saves the data at the end of the process. Data is 
only saved at the processing speed of the sensor instead of the 20Hz of the wireless 
communication. This way only updated data is saved. 
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4.2 Training/Configuration/Testing System 
 
4.2.1 Neural Network Training 
 
After project completion, future users must be able to easily train the neural network on 
additional training data and different object types to improve object detection performance and 
expand the scope of the system’s functionality. A training system was created to allow users to 
create, train, and test YOLO neural network models without needing to understand the 
complexity of the Darkflow framework. This training is intended to be done on a computer on 
the ground prior to flight, preferably with a GPU as it is very computationally intensive. This 
training system consists of an intuitive command prompt user interface that guide the user 
through the process of generating necessary configuration files and settings to properly train a 
network model  
 
4.2.2 Camera Calibration 
 
In order to accurately be able to calculate distances using a camera, certain camera parameters 
such as the focal length and a distortion matrix must be calculated. To make this easier for the 
user, a command line camera calibration tool was created to be run on the real time system’s 
camera before use. 
 

 
Figure 5: Camera Calibration Tool 

 
4.2.3 Testing Suite 
 
A testing suite containing 18 testing videos was created to gauge the performance of the system. 
These videos were recorded at known distances away from the leader UAV. At many points 
during the development of the system, the testing suite was run on these videos to produce 
average performance and system statistics. A culmination of these statistics were created by 
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graphs, examples of which can be seen below. All of the final graphs created by the testing suite 
can be seen in the Appendix. 

 
Figure 6: Example testing suite output graphs 

 
5.0 Quality Assurance 
 
In order to assure the quality of the Situational Awareness Sensor, many steps have been taken to 
ensure proper testing practices and coding standards. These steps are summarized in the 
following sections.  
 
5.1 Integration Testing 
 
Integrating the software to ensure compatibility between all the different components in order to 
produce accurate measurements for the clients use is an increasingly important and difficult thing 
to accomplish. “Big bang” integration testing was performed to ensure the entire system 
functions as a whole. Entire system integration was “ground tested” by running the software on 
the Raspberry Pi in ideal indoor conditions and “flight tested” with a fleet of two aircraft. 
Integration between each module was tested by ensuring the outputs from one module 
successfully can be inputted by the subsequent module for various test cases. One example of 
module integration is testing that the bounding box from the neural network can be successfully 
transferred to the three distance estimating modules in various testing cases.  
 
5.2 User Interface Testing 
 
The software includes user interfaces for neural network training and testing, color mask 
creation, logging, and camera calibration. Manual testing was done on the different user 
interfaces used in this software including the tools used for neural network training, color mask 
creation and camera creation. The graphical interfaces are somewhat simple to test since there is 
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a limited set of actions the user can take in the interface. The command line prompts on the other 
hand are more thoroughly tested for whatever inputs a user could create.  
 
5.3 Code Metrics 
 
To ensure code adheres to the SOLID principles and good programming practices, this software 
adheres to the PEP-8 style guide. This ensures code is easy to read and extend once the software 
is delivered to the client. Additionally, using open source code metric analyzes such as Radon 
helped identify complex code to refactor.  
 
5.4 User Acceptance Testing 
 
The user, or client, will use this system in addition to their currently in use systems to accurately 
gauge distance between UAV aircraft. Distance measurements should be written out to a logging 
file as well as communicated to other aircraft through UDP communication. The client wants a 
distance measure to be within a few inches to centimeters. The system will be checked by the 
client from the ground after the flight has taken place since these drones are meant to fly 
autonomously.  
 
5.5 Performance 
 
The performance of our system is measured in several ways. Each function call is timed and the 
timing result is written to a log for analysis of what aspects of the program take the most time. 
Additionally CPU usage, memory usage, and other metrics are logged to ensure the program 
makes efficient use of hardware resources. The results of the neural network are logged to 
determine how often it successfully identifies the object. Finally, the distance estimates are 
compared to actual distance measurements to analyze the overall accuracy of the estimates. 
 
6.0 Results 
 
6.1 Summary of Testing 
 
The final software system includes a comprehensive testing environment which runs the main 
program against a set of 18 testing videos. This environment computes the average accuracy of 
detection, tracking, and distance estimation systems and also performs timing analysis. Graphing 
all statistical data from the test environment shows improvement of the system as optimizations 
were performed. This environment also ensures the software is well integrated and runs smoothly 
without errors. Unit tests of the code were done prior to the compilation of the integrated system 
to ensure non-working portions were eliminated prior to adding the code into the integrated 
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program. Manual testing was done throughout the development process and was the only testing 
method ran on GUIs and UIs. Flake 8 and Radon were run on all code to ensure low cyclomatic 
complexity and adherence to the PEP8 style guide 
 
6.2 Performance testing results 
 
The best performance recorded by the testing environment has the following characteristics: 

● Average plane detection percentage: 87% 
● Average ID accuracy: 80% 
● Average FPS (on Raspberry Pi 3 B+): 1.666 
● Average FPS (on ASUS with Intel core i7 processor, Ubuntu 18.04): 16.315  
● Error in bounding box distance estimation: X: 0.4 m Y: 1.2 m Z: 0.4 m 
● Error in PNP distance estimation: X: 1.3 m Y: 1.1 m Z: 0.7 m 
● Error in rudder distance estimation X: 0.7 m Y: 1.0 m Z: 1.7 m 
● Average CPU Usage (on Raspberry Pi 3 B+): 91.25% 

6.3 Results of Usability Tests 
 
The completed system was tested during a live flight test during Week 6 to demo the system in 
an environment that is similar to the high altitude environment that the final system is intended 
for. Although our current system did not perform as well in the air as it does in our grounded test 
environment, baseline results and additional data that could be used to improve the system for 
use in flight were obtained. Based on this final flight test, improvements to the system were 
made before the final product was delivered to the client. 
 
6.4 Future Work  
 
This system was created and trained to recognize a OGAR model airplane; the actual UAVs used 
by Sunlight Aerospace  will likely be different models and may not be detected by the neural 
network model this project developed. To correct for this, new training data will have to be 
collected and labeled to allow this system to function for other aircraft. This system could also be 
extended to recognize other types of objects such as manned aircraft to aid in object collision 
avoidance. Further training of the neural network on new class types could be used to make this 
extension. Additionally, user interfaces such as the neural network training environment and 
camera calibration could be extended to be more user-friendly by including GUIs.  
 
6.5 Lessons learned 
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We learned many things throughout the completion of this project. First, we learned that creating 
a dedicated testing environment makes performing integration testing much easier and allows 
improvements in the system over time to be tracked and backed up with data from these 
integration tests. 

Throughout our project there were many times when one group member was stuck trying to 
debug an issue or find the source of an error in results. Bringing in another person to look over 
the issue or talk through it almost always solved the issue much faster than it would have been 
solved alone. 

Keeping good records of changes, library versions, and terminal commands makes repeating or 
recreating the development environment much easier. Many times, errors were caused by a team 
member using the wrong version of libraries like Tensorflow or OpenCV than what the software 
was designed to work with. This issue was exacerbated by situations when many libraries relied 
on each other and on incompatible versions of libraries. Not keeping good documentation on the 
steps and libraries required to install and run a component of the software, such as the neural 
network, also resulted in wasted time debugging. 

We also learned that test driven development was difficult when creating a hardware-based 
project. In most classes before this, we were given very structured instructions on what features 
to add and where they would go; when developing this product we didn’t always know what 
function would be implemented, how they would work, and what hardware they would be 
utilizing. Manual testing was much easier to do but often came back to hurt the project later 
without an easy way to find which class/function was causing which bug. 
 
7.0 Appendix 
 
7.1 Conventions 
To ensure that the software is consistent there is a set of standards on the units and coordinate 
frames. All distance measurements are done in meters.  
 
7.2 Box and Point Distance Calculations  

distance from object (mm) = [3]perceived length (px)  sensor size (mm)*
focal length (mm)  known length (mm)  image length (px)* *  

7.3 Focal Length Calculations  
 

focal length (mm) = image length (px)
camera matrix width (px)  sensor size (mm)*  
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7.4 Final Testing Suite Graphs 

 
7.4.01: Average CPU Usage Per Core on Pi for each System Iteration 
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7.4.02: Average UAV Identification Confidence for each System Iteration 

 
7.4.03: Average Memory Usage in GigaBytes for each System Iteration 
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7.4.04: Percent of Correct Identifications for each System Iteration 

 
7.4.05: Average Bounding Box Estimation Error for each System Iteration 
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7.4.06: Average Rudder Estimation Error for each System Iteration 

 
7.4.07: Average PNP Estimation Error for each System Iteration 
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7.4.08: Percent of Successful UAV Detections for each System Iteration 

 
7.4.09: Average UAV Identification Confidence for each System Iteration 
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7.4.10: Average Function Runtime for each System Iteration 

 
7.5 Confidence Changes  
 
Changing the confidence threshold of the neural network determines what level of confidence 
the neural network must have in its detection in order to return a bounding box. The following 
graphs illustrate how the confidence threshold affects the outputs of the system. The final system 
is set to run at a threshold of 0.6  
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7.5.1: Plane Detection Confidence 
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7.5.2: Plane Identification Confidence 
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7.5.3: Errors in Bounding Box Distance Estimation 
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7.5.4: Errors in PNP Distance Estimation 
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7.5.5: Errors in Rudder Distance Estimation 
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7.5.6: Average RPE at Different Confidences 
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