

Salesforce Mock API
Trevor Kerr, Joseph O’Brien, Miles Bishop

June 18, 2019

Salesforce 2 Mock API 2

Table of Contents

Introduction 3
Client 3
Product Vision 3
Functional 4
Non-Functional 4

System Architecture 4
Description 4

Figure 1: Our Service and the Client’s Service 5

Technical Design 5
Testing Endpoints 5

Figure 2: Handling a Request 6
gRPC Endpoints 7

Figure 3: How gRPC Request is Handled 7

Quality Assurance 9
Goals 9
Strategy 9
Risks 9

Results 9
Features that we did not have time to implement 9
Performance testing results 10
Results of usability tests 10
Lessons Learned 10

Appendix A:Our Service 12

Appendix B: Test Items 13
Endpoints (Spring @RequestMapping within a @RestController) 13
Intermediate Items (Methods used within @RequestMappings) 14
Other Functionionality 16

Appendix 3: Report Feedback 17
Addressing Feedback 28

Salesforce 2 Mock API 3

Introduction

Client

Salesforce is the company behind the world’s #1 customer relationship
management platform. Their software is cloud-based, making it easy for teams to setup
and use. Salesforce offers a wide variety of products to help improve productivity,
communication, and organization.

Salesforce is one of many companies to make the move towards a microservice
architecture. Loosely coupled services means easier development, however, testing
and integrating these services is not so easy. In order to test a new microservice, one
must also set up the other microservices that it will be communicating with. This can
take a long time and presents a significant challenge for developers trying to maintain
microservices.

Product Vision

Our product aims to expedite the process for testing microservices by creating an
API that features runtime configurability for mocking other services and gRPC Remote
Procedure Call (gRPC) support over HTTP/2. However, our client also specified a
feature wishlist which gave us these additional features to implement:

- Automated configuration through Open API Specs (Contract Loading)
- Browser based UI for summarizing endpoints
- Simulating connection timeouts
- Time constrained testing
- Persistent datastore for loaded endpoints
- Triggers (Actions to be performed when certains request is made)
- Value Generation (Generate value for a specified data type)

Our client should be able to create multiple instances of our product and mock any
services needed to create the appropriate testing environment. The client should also
be able to get meaningful information back from the product regarding the results of API
activity.

Functional
The Functional Requirements are as follows:

- Be able to be configured to accept certain requests
- Be able to respond with specific responses
- Inform the tester of the test results

Salesforce 2 Mock API 4

- Contract testing - given an API contract, at the end of tests, verify that all
requests and responses match that contract

- Support gRPC requests

Non-Functional
The finished product comes with documentation so that it can be easily set up

and used. In addition, there are a few backend details that were observed. The product
needed to be written in Java using the spring framework, and was as RESTful as
possible. Some other non-functional requirements follow:

- Documentation on how to use Mock API
- List of API endpoints
- Target a RESTful API pattern
- Written in Java 8
- Utilize the spring framework

System Architecture

Description

The design of our Mock API service can be shown using two flow charts, see
Figure 1 below and Appendix A. The first flowchart shows how our service fits into the
client's current service. There are two options for the use of our system; the first option
is that their software will generate a request which will be sent to our Mock API, then our
API will send a response back. The second option is for the client to access the API
manually to add endpoints, remove endpoints, or check the test results. The API will
perform the appropriate task and then show the user the results of that task. The
second flowchart shows how the request is handled. If the API receives a ‘new
endpoint‘ call then the service will parse the HTTP/JSON file and create a new endpoint
for it. It will then send a response of ‘Successfully created’ to the console. If the API
receives a call to ‘delete’ an endpoint then the service will parse the HTTP/JSON file
and remove the correct endpoint. It will also print a response of ‘Successfully Removed’
or ‘invalid id’ if the incorrect id was given. If the API receives a ‘test API’ call then the
service will check if the endpoint exists, and if it does, it responds with data given when
setting up the endpoint. The results for the API test call will be stored in test results. If
the API service receives a ‘results’ call then the data from all the API test calls is
compiled and sent to the user as either a JSON file or through a visual interface.

Salesforce 2 Mock API 5

Figure 1: Our Service and the Client’s Service

Technical Design

Testing Endpoints

Handling endpoints created by the user is one of the most important parts of this
project. This process is shown in detail in Figure 2 below.

 In order to accomplish this, we needed an endpoint capable of catching all the
user-created endpoints. Any request not captured in our predefined endpoints has their
path and method checked to see if it matches any user-created endpoints. If the
endpoint is found, we need to check if it is a gRPC request. If it isn’t, then we check if it
contains any path variables. This is done by using a regex to check for any “{“ or “}.” If
these are found, the variables from the request are stored so that the user can check
what data is being used for this endpoint. We then set the response headers and body,
and send that data back. When this is finished, the time when the endpoint was hit is
stored and the number of times it has been hit is incremented.

Salesforce 2 Mock API 6

Figure 2: Handling a Request

gRPC Endpoints

gRPC is a framework that speeds up data serialization for transport over a
network. It can be used as a substitute for JSON or XML. In order to support gRPC
requests, we needed to add HTTP/2 support and the ability to compile proto files. These
files define the gRPC service that we need to emulate, and can be compiled to Java

Salesforce 2 Mock API 7

classes. These files are then added to our project at build time so that they can be used
to serialize the data to send back. This process is shown in Figure 3 below.

 We decided to use the same request mapping for all stored endpoints, so gRPC
(HTTP/2) and HTTP/1 requests go to the same place. In order to filter gRPC requests,
we used a flag that users must raise when creating a gRPC endpoint. The user must
also supply the name of the class that the protobuf compiler will create at runtime and
use to serialize the response. Using Java reflection, our server instantiates a builder for
that response object. Then, we take the desired response and convert it to JSON. This
JSON is passed to a function that merges the JSON with our builder object. This object
is then built into a protobuf response object and returned over HTTP/2.

Figure 3: How gRPC Request is Handled

Salesforce 2 Mock API 8

Quality Assurance

Goals
The quality assurance of our product follows these main goals:

- Summarize the strategy
- Provide information on testing tools used
- Summarize testing risks

Strategy

Our quality assurance strategy mainly consisted of unit level tests in order to
verify the functionality of individual components. The summary for each of these tests
can be seen in appendix B. As we added new features, we performed integration and
progressive regression testing in order to verify that other functionality was maintained.
We also employed functional tests in order to assure that the product meets business
requirements.

Risks

Since attempting to deliver an easily configurable mock ​microservice​, there are
some risks associated with the​ dependability of​ the product. If the product fails to mimic
certain microservice behavior, then Salesforce developers might find it more efficient to
write their own mock services. This could be especially true if our documentation is not
helpful for those that may want to extend our product to meet their specific needs. We
could have also failed to test the product thoroughly enough to exploit potential
inefficiencies or bugs.

Results

There were some features that we were not able to implement due to time
constraints. These features, such as triggers, value generators, and other additions to
endpoints were not critical features according to the client.

Features that we did not have time to implement

- Triggers
- The ability to change the responses of certain endpoints when others are

hit. This could be implemented in the future with some changes to the
Endpoint class.

Salesforce 2 Mock API 9

- Value Generators
- Given something like ${email} as a response type, the service would

generate a random email. This would be harder to implement, but it could
be done.

Performance testing results

Our QA plan worked well, we were able to get cover 96% of all lines in the code
base with tests. All of the JUnit and functional tests are passing.

Results of usability tests

The client is happy with the product, although there is still work that could be
done to improve it. The service is working well, and all of the functional tests are
passing. For future work, the client could add the features that we did not have time to
implement. There were several features that the client wants that were outside of the
scope of this project such as dynamic port binding and a full web UI. These could be
implemented, however, they would take some more work due to the many complex
parts required for each.

Lessons Learned

Spring is a very robust and easy to use framework. Once the framework is set
up, all of the features that we needed were easy to add. The framework does a lot of the
work for you, allowing you to quickly setup your project. Without spring, we would not
have been able to implement as much as we did.

Java is a very powerful language, but with lots of boilerplate. It let us do

everything that we needed to do, but could be very verbose. Also, there is a plethora of
Java libraries, everything that seemed complicated for us to do manually had a library to
help us. During the project, we had a problem with time and had to switch libraries. If we
had looked at all of the options for a solution before we choose one we would have
avoided rewriting code.

gRPC support was perhaps the most difficult task. We had to find a way to

configure our Spring Boot application to accept HTTP/2 requests and then return the
correct serialized response using protocol buffers. Serializing the responses was tricky.
We used Java reflection in order to create Java objects from the proto files supplied.
Then merged the desired response data with the created object. Most gRPC
applications do not include this step because developers know what services will be
implemented. It took us about a week to get this working. This was one of the critical
features, and we waited till week 5 to start work on it. Had we started to develop this

Salesforce 2 Mock API 10

feature earlier, we would’ve had more time to familiarize ourselves with the challenge
we faced and write the appropriate test cases. This taught us that it is not a good idea
to put aside critical feature implementation, especially when the feature relies on a
framework that is foreign to the entire team and relatively new.

We learned that Agile is an effective way to manage a team. However, we also

learned that is important to maintain a routine that keeps the team in sync and focused
on the right tasks. There were days where we forgot to do a formal stand up. We also
forgot to do some weekly retrospectives.

We also learned the importance of effective client communication. Our best

resource was our client. There were times where we needed to be more effective
communicators in order to keep the client and ourselves on the same page.

Salesforce 2 Mock API 11

Appendix A:Our Service

Salesforce 2 Mock API 12

Appendix B: Test Items

- Endpoints (Spring @RequestMapping within a @RestController)
- Creating Endpoint (/when POST)

- Pass Criteria​: endpoints are created with the appropriate
data and stored

- Deliverables​: jUnit test using MockMvc

- Deleting Endpoint
- Pass Criteria​: endpoint for provided id is set to inactive
- Deliverables: jUnit using MockMvc

- Report of Server Activity
- Pass Criteria​: returns json of all active endpoints and their

data as well as unexpected requests
- Deliverables​: jUnit using MockMvc that checks for 200

status code

- Report Web Page
- Pass Criteria​:

- request yields a well-designed web page that contains
correct data for active endpoints

- Also need to verify that user can delete endpoints
using links/buttons

- Deliverables​: jUnits tests using MockMvc (not sure about UI
tests yet)

- Report Using Time Constraints

- Pass Criteria​: returns json of all active endpoints and their
data as well as unexpected requests that occur between a
given timeframe

- Deliverables​: jUnit using MockMvc

- Listing Active Endpoints
- Pass Criteria​: returns correctly formatted json containing all

active endpoints with correct data
- Deliverables​: jUnit test(s) using MockMvc

Salesforce 2 Mock API 13

- Making Requests to a Created Endpoint
- Pass Criteria​: response contains the expected behaviour

and any triggers, path variables, or request parameters are
handled appropriately

- Deliverables​: jUnit tests using MockMvc and
MockRestServiceServer

- Verify API Contract Test Results

- Pass Criteria​: contract are properly verified and reported
- Deliverables​: jUnit test using MockMvc (and maybe

MockRestServiceServer)

- Intermediate Items (Methods used within @RequestMappings)
- Making Endpoint INACTIVE

- Pass Criteria​: State of endpoint corresponding to passed in
ID has been successfully changed to INACTIVE

- Deliverables​: jUnit test case(s)

- Adding Endpoint
- Pass Criteria​: State of new endpoint is ACTIVE and it exists

in endpoints map
- Deliverables​: jUnit test case(s)

- Adding Hit

- Pass Criteria​: call increments request counter for endpoint
and creates and adds timestamp for hit

- Deliverables​: jUnit test case(s)

- Adding an Unexpected Endpoint
- Pass Criteria​: unexpected endpoint is created or modified

with timestamp of request, request counter is incremented,
and the state is changed to UNEXPECTED

- Deliverables​: jUnit test case(s)

- Getting Map Containing All Endpoints
- Pass Criteria​: return endpoints map
- Deliverables​: jUnit test case

Salesforce 2 Mock API 14

- Getting List of Active Endpoints

- Pass Criteria​: returns list of all active endpoints
- Deliverables​: jUnit test case

- Filtering by Time
- Pass Criteria​: returns properly list of endpoints that fall

within the passed in start and stop times
- Deliverables​: jUnit test case(s)

- Checking if Endpoint Meets Time Constraints

- Pass Criteria​: adds filtered times if appropriate and returns
copy of endpoint with filtered timestamps

- Deliverables​: jUnit test cases

- Get Requested Endpoint if it Exists
- Pass Criteria​: returns the correct endpoint object if the

request matches an existing ACTIVE endpoint
- Deliverables​: jUnit test case using MockMvc

- Getting Stack Trace of Requests

- Pass Criteria​: return list of endpoints that have been called
- Deliverables​: jUnit test case

- Get Endpoint for ID

- Pass Criteria​: returns the endpoint corresponding to the
passed in ID

- Deliverables​: jUnit test case

- Getting String of Requests Stack Trace
- Pass Criteria​: returns json formatted stack trace (list of

called endpoints)
- Deliverables​: jUnit test case

- Checking if Endpoint Already Exists and is ACTIVE

- Pass Criteria​: returns the endpoint object for passed in ID if
endpoint exists and is ACTIVE, null otherwise

- Deliverables​: jUnit test cases

Salesforce 2 Mock API 15

- Other Functionionality

- Connection Timeouts
- Pass Criteria​: system waits the requested time duration and

returns the correct response
- Deliverables​: jUnit test cases

- gRPC Support

- Pass Criteria​: product is able to accept and return gRPC
requests (HTTP 2)

- Deliverables​: jUnit test file/case(s)

- Value​ Generators
- Pass​ ​Criteria​: values are generated and stored

appropriately
- Deliverables​: jUnit test cases using MockMvc

- Contract Loading:

- Pass​ ​Criteria​: a swagger spec can successfully be loaded
resulting in a configured mock server that works as specified

- Deliverables​: jUnit test case with the use of MockMvc

Salesforce 2 Mock API 16

Appendix 3: Report Feedback

Salesforce 2 Mock API 17

Salesforce 2 Mock API 18

Salesforce 2 Mock API 19

Salesforce 2 Mock API 20

Salesforce 2 Mock API 21

Salesforce 2 Mock API 22

Salesforce 2 Mock API 23

Salesforce 2 Mock API 24

Salesforce 2 Mock API 25

Salesforce 2 Mock API 26

Salesforce 2 Mock API 27

Addressing Feedback

Alejandro Caraveo Meraz
All feedback addressed except for past tense in requirements because they are

still required.

Andrea Golden-Lasher

All feedback addressed.

Zachary Smeton

This is a technical document so the reader should know most of the vocabulary.
The testing information was moved to the appendix. More detail has been added in
most places, including system architecture. API testing is explained in the technical
details section. Grammar was fixed in the places specified.

Josh Nachtigal
The reader should know most technical terms. Everything else has been

addressed.

Kristin Farris

We addressed pretty much everything. Did not address the request for an
introduction section for “quality assurance” section since we feel the “goals” summary
gets the job done.

