salesforce

Salesforce Mock API

Trevor Kerr, Joseph O’Brien, Miles Bishop
June 18, 2019

Salesforce 2 Mock API

Table of Contents

Introduction
Client
Product Vision
Functional
Non-Functional

System Architecture
Description
Figure 1: Our Service and the Client’s Service

Technical Design
Testing Endpoints
Figure 2: Handling a Request
gRPC Endpoints
Figure 3: How gRPC Request is Handled

Quality Assurance
Goals
Strategy
Risks

Results
Features that we did not have time to implement
Performance testing results
Results of usability tests
Lessons Learned

Appendix A:Our Service
Appendix B: Test Items

Endpoints (Spring @RequestMapping within a @RestController)
Intermediate Items (Methods used within @RequestMappings)

Other Functionionality

Appendix 3: Report Feedback
Addressing Feedback

N N o o1 a N~ b A A OO

© O © o 9

- A
o O O ©

-
N

[I (L U
O~ W W

N =
o ~N

Salesforce 2 Mock API 3

Introduction

Client

Salesforce is the company behind the world’s #1 customer relationship
management platform. Their software is cloud-based, making it easy for teams to setup
and use. Salesforce offers a wide variety of products to help improve productivity,
communication, and organization.

Salesforce is one of many companies to make the move towards a microservice
architecture. Loosely coupled services means easier development, however, testing
and integrating these services is not so easy. In order to test a new microservice, one
must also set up the other microservices that it will be communicating with. This can
take a long time and presents a significant challenge for developers trying to maintain
microservices.

Product Vision
Our product aims to expedite the process for testing microservices by creating an

API that features runtime configurability for mocking other services and gRPC Remote
Procedure Call (gRPC) support over HTTP/2. However, our client also specified a
feature wishlist which gave us these additional features to implement:

- Automated configuration through Open API Specs (Contract Loading)

- Browser based Ul for summarizing endpoints

- Simulating connection timeouts

- Time constrained testing

- Persistent datastore for loaded endpoints

- Triggers (Actions to be performed when certains request is made)

- Value Generation (Generate value for a specified data type)

Our client should be able to create multiple instances of our product and mock any
services needed to create the appropriate testing environment. The client should also
be able to get meaningful information back from the product regarding the results of API
activity.

Functional
The Functional Requirements are as follows:

- Be able to be configured to accept certain requests
- Be able to respond with specific responses
- Inform the tester of the test results

Salesforce 2 Mock API 4

- Contract testing - given an API contract, at the end of tests, verify that all
requests and responses match that contract
- Support gRPC requests

Non-Functional

The finished product comes with documentation so that it can be easily set up
and used. In addition, there are a few backend details that were observed. The product
needed to be written in Java using the spring framework, and was as RESTful as
possible. Some other non-functional requirements follow:

- Documentation on how to use Mock API
- List of API endpoints

- Target a RESTful API pattern

- Written in Java 8

- Utilize the spring framework

System Architecture

Description

The design of our Mock API service can be shown using two flow charts, see
Figure 1 below and Appendix A. The first flowchart shows how our service fits into the
client's current service. There are two options for the use of our system; the first option
is that their software will generate a request which will be sent to our Mock API, then our
API will send a response back. The second option is for the client to access the API
manually to add endpoints, remove endpoints, or check the test results. The API will
perform the appropriate task and then show the user the results of that task. The
second flowchart shows how the request is handled. If the API receives a ‘new
endpoint‘ call then the service will parse the HTTP/JSON file and create a new endpoint
for it. It will then send a response of ‘Successfully created’ to the console. If the API
receives a call to ‘delete’ an endpoint then the service will parse the HTTP/JSON file
and remove the correct endpoint. It will also print a response of ‘Successfully Removed’
or ‘invalid id’ if the incorrect id was given. If the API receives a ‘test API’ call then the
service will check if the endpoint exists, and if it does, it responds with data given when
setting up the endpoint. The results for the API test call will be stored in test results. If
the API service receives a ‘results’ call then the data from all the API test calls is
compiled and sent to the user as either a JSON file or through a visual interface.

Salesforce 2 Mock API 5

T

@oﬂwa re >

k4

Generate Reguest

h 4

Mock API

h 4

Response

Our
Service

Figure 1: Our Service and the Client’s Service

Technical Design

Testing Endpoints
Handling endpoints created by the user is one of the most important parts of this
project. This process is shown in detail in Figure 2 below.

In order to accomplish this, we needed an endpoint capable of catching all the
user-created endpoints. Any request not captured in our predefined endpoints has their
path and method checked to see if it matches any user-created endpoints. If the
endpoint is found, we need to check if it is a gRPC request. If it isn’t, then we check if it
contains any path variables. This is done by using a regex to check for any “{* or “}.” If
these are found, the variables from the request are stored so that the user can check
what data is being used for this endpoint. We then set the response headers and body,
and send that data back. When this is finished, the time when the endpoint was hit is
stored and the number of times it has been hit is incremented.

Salesforce 2 Mock API 6

Receive Request

Search gRPC Check Existing
Senvices Endpaoints

.

Serialize Return Data

.

Send Back Data

Contains Path
Variables

Contains no Path
Variables

Jv Store Variable Daia

Add to Test Data

h 4

Set Headers

Return Body

.

Add to Test Data

Figure 2: Handling a Request

gRPC Endpoints

gRPC is a framework that speeds up data serialization for transport over a
network. It can be used as a substitute for JSON or XML. In order to support gRPC
requests, we needed to add HTTP/2 support and the ability to compile proto files. These
files define the gRPC service that we need to emulate, and can be compiled to Java

Salesforce 2 Mock API 7

classes. These files are then added to our project at build time so that they can be used
to serialize the data to send back. This process is shown in Figure 3 below.

We decided to use the same request mapping for all stored endpoints, so gRPC
(HTTP/2) and HTTP/1 requests go to the same place. In order to filter gRPC requests,
we used a flag that users must raise when creating a gRPC endpoint. The user must
also supply the name of the class that the protobuf compiler will create at runtime and
use to serialize the response. Using Java reflection, our server instantiates a builder for
that response object. Then, we take the desired response and convert it to JSON. This
JSON is passed to a function that merges the JSON with our builder object. This object
is then built into a protobuf response object and returned over HTTP/2.

Froto Files

.

Java Classes

.

Main Application

Serialized Output

Y

A

gRPC Request

Feceived

.

Results Sent back

gRPC Endpoints
Checked

Figure 3: How gRPC Request is Handled

Salesforce 2 Mock API 8

Quality Assurance

Goals
The quality assurance of our product follows these main goals:

- Summarize the strategy
- Provide information on testing tools used
- Summarize testing risks

Strategy

Our quality assurance strategy mainly consisted of unit level tests in order to
verify the functionality of individual components. The summary for each of these tests
can be seen in appendix B. As we added new features, we performed integration and
progressive regression testing in order to verify that other functionality was maintained.
We also employed functional tests in order to assure that the product meets business
requirements.

Risks

Since attempting to deliver an easily configurable mock microservice, there are
some risks associated with the dependability of the product. If the product fails to mimic
certain microservice behavior, then Salesforce developers might find it more efficient to
write their own mock services. This could be especially true if our documentation is not
helpful for those that may want to extend our product to meet their specific needs. We
could have also failed to test the product thoroughly enough to exploit potential
inefficiencies or bugs.

Results

There were some features that we were not able to implement due to time
constraints. These features, such as triggers, value generators, and other additions to
endpoints were not critical features according to the client.

Features that we did not have time to implement
- Triggers
- The ability to change the responses of certain endpoints when others are
hit. This could be implemented in the future with some changes to the
Endpoint class.

Salesforce 2 Mock API 9

- Value Generators
- Given something like ${email} as a response type, the service would
generate a random email. This would be harder to implement, but it could
be done.

Performance testing results
Our QA plan worked well, we were able to get cover 96% of all lines in the code
base with tests. All of the JUnit and functional tests are passing.

Results of usability tests

The client is happy with the product, although there is still work that could be
done to improve it. The service is working well, and all of the functional tests are
passing. For future work, the client could add the features that we did not have time to
implement. There were several features that the client wants that were outside of the
scope of this project such as dynamic port binding and a full web Ul. These could be
implemented, however, they would take some more work due to the many complex
parts required for each.

Lessons Learned

Spring is a very robust and easy to use framework. Once the framework is set
up, all of the features that we needed were easy to add. The framework does a lot of the
work for you, allowing you to quickly setup your project. Without spring, we would not
have been able to implement as much as we did.

Java is a very powerful language, but with lots of boilerplate. It let us do
everything that we needed to do, but could be very verbose. Also, there is a plethora of
Java libraries, everything that seemed complicated for us to do manually had a library to
help us. During the project, we had a problem with time and had to switch libraries. If we
had looked at all of the options for a solution before we choose one we would have
avoided rewriting code.

gRPC support was perhaps the most difficult task. We had to find a way to

configure our Spring Boot application to accept HTTP/2 requests and then return the
correct serialized response using protocol buffers. Serializing the responses was tricky.
We used Java reflection in order to create Java objects from the proto files supplied.
Then merged the desired response data with the created object. Most gRPC
applications do not include this step because developers know what services will be
implemented. It took us about a week to get this working. This was one of the critical
features, and we waited till week 5 to start work on it. Had we started to develop this

Salesforce 2 Mock API 10

feature earlier, we would’ve had more time to familiarize ourselves with the challenge
we faced and write the appropriate test cases. This taught us that it is not a good idea
to put aside critical feature implementation, especially when the feature relies on a
framework that is foreign to the entire team and relatively new.

We learned that Agile is an effective way to manage a team. However, we also
learned that is important to maintain a routine that keeps the team in sync and focused
on the right tasks. There were days where we forgot to do a formal stand up. We also
forgot to do some weekly retrospectives.

We also learned the importance of effective client communication. Our best
resource was our client. There were times where we needed to be more effective
communicators in order to keep the client and ourselves on the same page.

Salesforce 2 Mock API

Appendix A:Our Service

Request
/ l h 4 v l' v \‘
New End Point Call Delete End Point Call Test API Call Results Call List Start/Stop report/startStop
L4 v v v
Parsed HTTP Parsed HTTP Parsed HTTP Parsed HTTP

Y

h

¥

New End Point

Removed End Point

Test Results

Compile Test Results

Compile Active
Endpoints

Start or Start Time
Recorded

Compile Test Results

Created

!

!

!

Response

Salesforce 2 Mock API 12

Appendix B: Test Items

- Endpoints (Spring @RequestMapping within a @RestController)
- Creating Endpoint (/when POST)
- Pass Criteria: endpoints are created with the appropriate
data and stored
- Deliverables: jUnit test using MockMvc

- Deleting Endpoint
- Pass Criteria: endpoint for provided id is set to inactive
- Deliverables: jUnit using MockMvc
- Report of Server Activity
- Pass Criteria: returns json of all active endpoints and their
data as well as unexpected requests
- Deliverables: jUnit using MockMvc that checks for 200
status code

- Report Web Page
- Pass Criteria:
- request yields a well-designed web page that contains
correct data for active endpoints
- Also need to verify that user can delete endpoints
using links/buttons
- Deliverables: jUnits tests using MockMvc (not sure about Ul
tests yet)

- Report Using Time Constraints
- Pass Criteria: returns json of all active endpoints and their
data as well as unexpected requests that occur between a
given timeframe
- Deliverables: jUnit using MockMvc

- Listing Active Endpoints
- Pass Criteria: returns correctly formatted json containing all
active endpoints with correct data
- Deliverables: jUnit test(s) using MockMvc

Salesforce 2 Mock API 13

- Making Requests to a Created Endpoint
- Pass Criteria: response contains the expected behaviour
and any triggers, path variables, or request parameters are
handled appropriately
- Deliverables: jUnit tests using MockMvc and
MockRestServiceServer

- Verify API Contract Test Results
- Pass Criteria: contract are properly verified and reported
- Deliverables: jUnit test using MockMvc (and maybe
MockRestServiceServer)

- Intermediate Items (Methods used within @RequestMappings)
- Making Endpoint INACTIVE
- Pass Criteria: State of endpoint corresponding to passed in
ID has been successfully changed to INACTIVE
- Deliverables: jUnit test case(s)

- Adding Endpoint
- Pass Criteria: State of new endpoint is ACTIVE and it exists
in endpoints map
- Deliverables: jUnit test case(s)

- Adding Hit
- Pass Criteria: call increments request counter for endpoint
and creates and adds timestamp for hit
- Deliverables: jUnit test case(s)

- Adding an Unexpected Endpoint
- Pass Criteria: unexpected endpoint is created or modified
with timestamp of request, request counter is incremented,
and the state is changed to UNEXPECTED
- Deliverables: jUnit test case(s)

- Getting Map Containing All Endpoints
- Pass Criteria: return endpoints map
- Deliverables: jUnit test case

Salesforce 2 Mock API 14

Getting List of Active Endpoints

- Pass Criteria: returns list of all active endpoints
- Deliverables: jUnit test case

Filtering by Time

- Pass Criteria: returns properly list of endpoints that fall
within the passed in start and stop times
- Deliverables: jUnit test case(s)

Checking if Endpoint Meets Time Constraints

- Pass Criteria: adds filtered times if appropriate and returns
copy of endpoint with filtered timestamps
- Deliverables: jUnit test cases

Get Requested Endpoint if it Exists

- Pass Criteria: returns the correct endpoint object if the
request matches an existing ACTIVE endpoint
- Deliverables: jUnit test case using MockMvc

Getting Stack Trace of Requests

- Pass Criteria: return list of endpoints that have been called
- Deliverables: jUnit test case

Get Endpoint for ID

- Pass Criteria: returns the endpoint corresponding to the
passed in ID
- Deliverables: jUnit test case

Getting String of Requests Stack Trace

- Pass Criteria: returns json formatted stack trace (list of
called endpoints)
- Deliverables: jUnit test case

Checking if Endpoint Already Exists and is ACTIVE

- Pass Criteria: returns the endpoint object for passed in ID if
endpoint exists and is ACTIVE, null otherwise
- Deliverables: jUnit test cases

Salesforce 2 Mock API 15

- Other Functionionality
- Connection Timeouts
- Pass Criteria: system waits the requested time duration and
returns the correct response
- Deliverables: jUnit test cases

- gRPC Support
- Pass Criteria: product is able to accept and return gRPC
requests (HTTP 2)
- Deliverables: jUnit test file/case(s)

- Value Generators
- Pass Criteria: values are generated and stored
appropriately
- Deliverables: jUnit test cases using MockMvc

- Contract Loading:
- Pass Criteria: a swagger spec can successfully be loaded
resulting in a configured mock server that works as specified
- Deliverables: jUnit test case with the use of MockMvc

Salesforce 2 Mock API

Appendix 3: Report Feedback

Team Reviewed: _Salesforce 2

Reviewed by: Alejandro Caraveo Meraz

Submit a document that answers the following questions. If any question does not apply (e.g., if there
are no major sections that are unclear), state that. BUT, it’s highly unlikely that any document will be

perfect. A review that does not include any suggestions will not receive credit (will be reflected in the
Advisor Evaluation). Having the ability to review/edit/critique reports is a good skill!

1. All necessary sections were included: Yes

2. What is not clear? Either a) list subsection(s) of the document or b) cut-and-paste sentences or
paragraphs that need work (you may also use Review option of Word/OO if you prefer)

Test Items: Report using time constraints not filled out
Test Items: Triggers- has a TBD when this is the final report
3. Where is more detail needed?

The client section seemed rather shot, a bit more explanation would be appreciated since | have little
background to this client.

4. Any sections where verb tense was not changed from original document? {e.g., “we will do X" rather
than “we did X”). Note that present tense is fine, especially if describing the design. OR where document
does not flow (e.g., intermediate reports pasted together with no attempt to turn into cohesive
document).

In functional requirements, the first sentence should be in past tense since the project has ended.
Non-functional requirements also has things in future tense.

5. List any obvious grammar issues.
In lessons learned, -- Also, there are very many Java libraries << sounds weird

If you were grading this paper in its current form, what score would you give it? Fill in the rubric below.
NOTE: only final submissions will be graded. The purpose of this is to give students feedback. If you
would give 19/20, report is very close. If only 15/20, report needs some work.

Document contains all the required sections. 5 5

16

Salesforce 2 Mock API

Document has adequate detail

Document is formatted correctly, including figures with labels
(referenced in text)

Document complies with style and grammar guidelines, no
spelling errors

Total

5 4 —figures within

text not labeled

20 19

17

Salesforce 2 Mock API

Team Reviewed: Salesforce 2

Reviewed by: Sunlight Photonics-Andrea Golden-Lasher

Submit a document that answers the following questions. If any question does not
apply (e.g., if there are no major sections that are unclear), state that. BUT, it's
highly unlikely that any document will be perfect. A review that does not include
any suggestions will not receive credit (will be reflected in the Advisor Evaluation).
Having the ability to review/edit/critique reports is a good skill!

1. All necessary sections were included: Yes No

2. What is not clear? Either a) list subsection(s) of the document or b) cut-and-paste
sentences or paragraphs that need work (you may also use Review option of Word/
00 if you prefer)

Overall question: There is terminology (endpoints, gRPC) | am not familiar with,
but maybe your client is. It may be helpful to the reader to define these terms early
in the report.

System Architecture-Description: From ‘There are two options, ... to ‘or check
the test results’ the wording is choppy

Quality Assurance-Test Items: Maybe consider summarizing the section and
including the rest as an appendix? You cover a lot of good testing, but the
deliverable for most of them is the same for all three pages.

3. Where is more detail needed?

Quality Assurance-Test Items-Report Using Time Constraints: Missing the
bullet point information.

Quality Assurace-Test Items: Some descriptions are very vague or are still ‘TBD’

4. Any sections where verb tense was not changed from original document? (e.g.,
“we will do X" rather than “we did X”). Note that present tense is fine, especially if
describing the design. OR where document does not flow (e.qg., intermediate reports
pasted together with no attempt to turn into cohesive document).

Requirements-both Functional and Non-Functional: Add transitional sentence
between the paragraph and the bullet points for better flow, such as “These
requirements are summarized below:"”

Quality Assurance-Goals: Add a sentence before the bullet points explaining
what they are for/introducing the quality assurance section

5. List any obvious grammar issues.

18

Salesforce 2 Mock API 19

Cover Page: Update the date to the day you turn it in
Introduction-Client-Sentence 1: worlds - world’s
Introduction-Client-Sentence 2: comma after ‘cloud-based’
Introduction-Product Vision-Sentence 2: developer’s — developers

Technical Design-Testing Endpoints: figure missing proper format and in text
reference

If you were grading this paper in its current form, what score would you give it? Fill
in the rubric below. NOTE: only final submissions will be graded. The purpose of this
is to give students feedback. If you would give 19/20, report is very close. If only
15/20, report needs some work.

Document contains all the required sections. 5 5
Document has adequate detail 5 2
Document is formatted correctly, including figures 5 4

with labels (referenced in text)

Document complies with style and grammar 5 3
guidelines, no spelling errors

Total 20 17

Salesforce 2 Mock API 20

Team Reviewed: Salesforce 2

Reviewed by: Zachary Smeton

Submit a document that answers the following questions. If any question does not apply (e.g., if there
are no major sections that are unclear), state that. BUT, it's highly unlikely that any document will be

perfect. A review that does not include any suggestions will not receive credit (will be reflected in the
Advisor Evaluation). Having the ability to review/edit/critique reports is a good skill!

1. All necessary sections were included: Yes No

2. What is not clear? Either a) list subsection(s) of the document or b) cut-and-paste sentences or
paragraphs that need work (you may also use Review option of Word/OO if you prefer)
e Mostly in the usage of different vocabulary without definition or explanation. What are
endpoints? What are endpoints responsible for? What does gRPC stand for?
e Quality Assurance Test Items is more of a useful document for the software developers than the
final report reader, most of the language and information feels more like a testing plan than a
write up about the testing process.

3. Where is more detail needed?
e System Architecture
* How an APl is tested with this API
¢ Requirements are short and sweet but uses technical terms without explanation (RESTful, API
contract)

4. Any sections where verb tense was not changed from original document? (e.g., “we will do X” rather
than “we did X”). Note that present tense is fine, especially if describing the design. OR where document
does not flow (e.g., intermediate reports pasted together with no attempt to turn into cohesive
document).
e Requirements is not in present or past however that feels correct to me... They were the goals
for the project, so future seems right.
* Quality Assurance — Goals (for lack of flow), Strategy, Test Items (contains some unimplemented
requirements), Risks, Results of usability tests

5. List any obvious grammar issues.

Salesforce is the company behind the world’s #1 customer relationship management solution.

Their software is cloud-based, making it easy for teams to setup and use.

The design of our Mock API service can be shown using two flow charts, see Figure 1 and 2 of the
appendix.

There are two options, their software will generate a request which will be sent to our Mock API. <- just
not a sentence

Salesforce 2 Mock API

Mixed usage of capitalization for the names of different API calls like “API test call” and “Results call.”
Any request that is not captured in the endpoints that we have specifically created is checked to see if it
is a user created endpoint.

If you were grading this paper in its current form, what score would you give it? Fill in the rubric below.
NOTE: only final submissions will he graded. The purpose of this is to give students feedback. If you
would give 19/20, report is very close. If only 15/20, report needs some work.

Document contains all the required sections. 5 5
Document has adequate detail 5 4
Document is formatted correctly, including figures with labels 5 3

(referenced in text)

Document complies with style and grammar guidelines, no 5 4
spelling errors

Total 20 16

21

Salesforce 2 Mock API

Team Reviewed: Salesforce
Reviewed by: Josh Nachtigal

Overall: Your report already seems pretty complete, but | honestly don’t really understand the details of
the project. It may make sense to your client which is most important, but some more detail may be
necessary for the advisors and other people reading the report.

1. All necessary sections were included: Yes!

2. What is not clear? Either a) list subsection(s) of the document or b) cut-and-paste sentences or
paragraphs that need work (you may also use Review option of Word/OQ if you prefer)

- gRPC is refenced many times but as far as | could see (I could have missed it) it is never defined.
- also RESTful, acronyms probably be defined on first use unless very well known

- in the system architecture paragraph (pg 4) the test results are referenced a couple times, but the
format is not specified here. Is it a HTTP/JSON file like the endpoints?

- in performance testing results (pg 11) does 96% of code covered mean 96% of code resides in some
unit test or does this have some other meaning?

3. Where is more detail needed?

- The results section feels slightly short but given that most tests seem to be unit tests which are
pass/fail this may be fine. If possible, this could be filled out more

4. Any sections where verb tense was not changed from original document? (e.g., “we will do X" rather
than “we did X”). Note that present tense is fine, especially if describing the design. OR where document
does not flow (e.g., intermediate reports pasted together with no attempt to turn into cohesive
document).

-None that | found
5. List any obvious grammar issues.

- Many statements are not clear or grammatically correct. For example, in the system architecture
paragraph, ‘There are two options, their software will generate a request which will be sent to our Mock
APL.’ does not really make sense. This could likely be resolved though a read through.

22

Salesforce 2 Mock API

Document contains all the required sections.

Document has adequate detail

Document is formatted correctly, including figures with labels
(referenced in text)

Document complies with style and grammar guidelines, no
spelling errors

Total

20

117/

23

Salesforce 2 Mock API 24

Team Reviewed: Salesforce 2

Reviewed by: Kristin Farris

Submit a document that answers the following questions. If any question does not
apply (e.g., if there are no major sections that are unclear), state that. BUT, it's
highly unlikely that any document will be perfect. A review that does not include
any suggestions will not receive credit (will be reflected in the Advisor Evaluation).
Having the ability to review/edit/critique reports is a good skill!

1. All necessary sections were included: Yes No

2. What is not clear? Either a) list subsection(s) of the document or b) cut-and-paste
sentences or paragraphs that need work (you may also use Review option of
Word/QO if you prefer)

* Product Vision: After reading this section, | am still a little confused about the
goal of the project. Be a bit more descriptive and detailed on what “to create
an APl that could be used in the testing of other APIs” means.

« Overall, what is meant by “requests”- http requests? What's a gRPC request?

« System Architecture: | feel like including figure 1 in the main part of the
report instead of the appendix would help with comprehension. Its not too big
so | don’t think it would be distracting

= System Architecture: To help with readability | would recommend “If the API
receives a new endpoint call...” = “If the APl receives a ‘new endpoint’ call...”
or “If the API receives a new endpoint call...” for that sentence and others
that talk about specific calls

« Technical Design: | think if things were reworded to be more concise in this
section, it would make more sense. For example “Any request that is not
captured in the endpoints that we have specifically created is checked to see
if it is user created endpoint. This is done by checking the path and method
of the request against our list of user created endpoints.” could be easily
reduced to “Any request not captured in our predefined endpoints is checked
against a list of user-created endpoints”

* Results: “we were able to cover 96% of all lines in the program” elaborate on
what cover means because it's a little confusing

« Appendix: The second figure is too blurry to read

3. Where is more detail needed?

Salesforce 2 Mock API 25

« Functional Requirements: “accept certain types of requests”, “able to respond
with specific responses” very vague

* Non-Functional Requirements: maybe make the the bullet point list more
sentence-like- for example Java 8 —» Written using Java 8

+ Figure labels needed

* Quality Assurance: Perhaps lead into this section with a few sentences,
starting out with the goals bullet pointed is abrupt. The same goes for the
start of the Test Items subsection

+ Test Items: there is nothing under the “Report Using Time Constraints” test

» Results: In the introduction it was stated “We have implemented all of the
client’s required features as well as many of the other stretch goals” but here
“There were some features that we were not able to implement due to time
constraints”. More detail on which one it is is needed

« Lessons Learned: | think elaborating on these points by making them actual
paragraphs with fully proper grammar would be helpful

4. Any sections where verb tense was not changed from original document? (e.g.,
“we will do X" rather than “we did X"). Note that present tense is fine, especially if
describing the design. OR where document does not flow (e.g., intermediate reports
pasted together with no attempt to turn into cohesive document).

+ Product Vision: “the service needed” in one sentence and “the service also
needs” in the next. Pick one tense

« Quality Assurance: “However, as we add new features, we will also need to
perform integration and progressive regression testing” You should be done
with adding features, so make this past tense

+ Results: “The client is happy with the product so far, although there is still
work that could be done to improve it”- “so far” doesn’t make sense with the
project being over

5. List any obvious grammar issues.
« Introduction: worlds —» world’s

« System Architecture: “There are two options, their software will generate a
request which will be sent to our Mock APL.” This sentence is not a sentence.

+ System Architecture: Grammar and capitalization is kind of all over the place
in this section.

Salesforce 2 Mock API

« Capitalization standard of “Spring”, “Java” and “Mock API” changes
throughout

« Overall, | think a read through of all the sections is needed. A lot of the
grammar mistakes and strange wording throughout would be easily fixed with
another read through.

+ (More format than grammar) Pick an indentation standard, it changes towards
the end

If you were grading this paper in its current form, what score would you give it? Fill
in the rubric below. NOTE: only final submissions will be graded. The purpose of this
is to give students feedback. If you would give 19/20, report is very close. If only
15/20, report needs some work.

Document contains all the required sections. 5 5
Document has adequate detail 5 4
Document is formatted correctly, including figures 5 4

with labels (referenced in text)

Document complies with style and grammar 5 3
guidelines, no spelling errors

Total 20 16

26

Salesforce 2 Mock API 27

Addressing Feedback

Alejandro Caraveo Meraz
All feedback addressed except for past tense in requirements because they are
still required.

Andrea Golden-Lasher
All feedback addressed.

Zachary Smeton
This is a technical document so the reader should know most of the vocabulary.
The testing information was moved to the appendix. More detail has been added in
most places, including system architecture. API testing is explained in the technical
details section. Grammar was fixed in the places specified.

Josh Nachtigal
The reader should know most technical terms. Everything else has been
addressed.

Kristin Farris
We addressed pretty much everything. Did not address the request for an
introduction section for “quality assurance” section since we feel the “goals” summary
gets the job done.

