
1

Salesforce Team 1:

Test Dependency Analysis

Team: Adrian Estrada, Bao Nguyen, Joss Chapman, Torin

Johnson, Willie Ruemmele

Client: Salesforce, Matt Buland

June 11th, 2019

2

Who is Salesforce:

Salesforce is the world’s largest CRM (Customer Relationship Management)

company, with 35,000 employees across 52 locations worldwide. They were the

originators of the Software as a Service (SaaS) business model, and one of the first

adopters of ‘The Cloud’. They were founded in 1999, and have managed to transform

their business into a multibillion dollar company, with 2018 having a total revenue of

13.3 billion dollars.

What is the Vision:

Phase 1: In this portion of the project, our client wanted us to write a program

which creates a spreadsheet to show function and class dependencies. To do this, we

took in Aura files (Salesforce specific code file) and JavaScript files. We parsed these

files for functions, and algorithmically found the dependencies. Finally, these

dependencies have been sorted and exported as a .csv file. We call this phase the

Code-to-Code Phase due to its nature of finding dependencies between pieces of code.

Phase 2 (Stretch): Using the created dependency file, the next step is to create

an application that will help the developer identify which tests to run based on the

changes to the code base that they make. We call this phase the Test-to-Code Phase

due to its nature of connecting tests to instances of code. It should be noted that this

phase is partially a stretch goal, with the requirement that we begin working on it without

the expectation of finishing.

Phase 3 (Stretch): Using the test-function/class associations, we will reverse the

process, making it so any test case can determine what functions are associated with it,

therefore streamlining the manual testing process by showing a developer how tests

and functions/classes are associated. We call this phase the Code-to-Test Phase due to

its nature of reversing the Phase 2 process. It should be noted that this entire phase is a

stretch goal, with the client having no expectation of us making any progress on it.

Functional Requirements:

The functional requirements for a project are the specific inputs and outputs that

are to be expected from our program. Below is a brief overview of our listed functional

requirements for each phase of our program. We have formatted this in a list, as that

was how the requirements were given to us.

Phase 1:

- Output a .csv spreadsheet which shows code dependencies

- Output linked files

- The program must take in Aura and JavaScript files

3

- The program must be easily usable by the command line

Phase 2:

- The program determines tests based on code dependencies based on the

functions in the code

Phase 3:

- The program determines tests based on code dependencies based on the tests

chosen

Non-Functional Requirements:

The non-functional requirements for a project include the design components, as

well as any aspect that isn’t a direct input output requirement designated by a client. In

other words, the components of our project which we get to control and change

dependent upon what we are most comfortable with doing (the how of the project).

Phase 1:

- Parses JavaScript and Aura files

- Is able to classify functions in JavaScript and Aura (lexing)

- Is able to classify function calls in JavaScript and Aura

- Is able to classify class/library dependencies

- Is able to determine code dependencies

- Is able to format a .csv file using dependencies

Phase 2 (Stretch):

- Is able to classify which tests are to be run based on the Aura and JavaScript

code

Phase 3 (Stretch):

- Is able to classify which Aura and Javascript files go with each test, based on the

test itself

System Architecture:

Diagrams:

All Phases Flowchart:

4

Figure 1: The above flowchart runs through our programs full structure with the included

stretch goals (phase 2 and 3). It is a simplistic model to help with a basic understanding

of how our program works (once fully completed) on a surface level, as well as the

direction we move during the creation of it.

Program Input/ Output Diagram

5

Figure 2: The above diagram shows the inputs and outputs of our program. Next to

each input or output is the phase in which it occurs. In addition, some outputs are

passed back as inputs in other phases (denoted by a curved arrow). The other flowchart

and UML contain more information on the inputs and outputs.

6

Technical Design:

Figure 3: The above UML is associated with Phase 1 (Code-To-Code) of our project.

The Main class uses Parser objects. Files are read into the Main class, which are

passed into the different Parser subclasses (depending on the file extension type). The

Parser classes then parse the code, and search for specific dependencies (function,

controller, class, etc.). A DepedencyMap (which is made of Row objects) is then

returned to the analyzer class to be used in the creation of a spreadsheet file for the

user.

DependencyMap

 The purpose of the program is to find all of the dependencies between different

types of files. In order to keep track of these dependencies, we created a

DependencyMap class. The DependencyMap works similarly to a

Map<String,Set<String>> (an adjacency list), but with some additional functionality.

The most important functional difference is the very overloaded put() method.

This method is how you add new dependencies to the map. However, there are several

7

different possible ways that you may want to add dependencies, depending on what

type of file you’re parsing, and which direction you consider the dependency to go. The

most straight forward is when one item depends on a set of items (e.g. a JavaScript

function depends on all of the functions that it calls). Also pretty straightforward is when

one item depends on another item. You can also use put() for when a set of items all

depend on a single item (e.g. all of the resources listed in navEventManager depend on

it). There’s even a version for if all of the items in one set depend on all of the items in

another set (e.g. All of the functions in a JavaScript file may depend on all of that file’s

imports). Most of the versions of put() end up calling some other version of put(). When

adding dependencies, the DepenencyMap identifies if they are for items that it already

has dependencies for, and correctly combines the keys and values.

 Each DependencyMap contains a single HashMap. While using a HashMap from

Strings to Sets of Strings may be easiest, this would only work if the only data needed

for the output were the names of the items (the String) and a list of items

they depended on (the Set of Strings). Because the output requires additional

data for each item, a slightly more complex data structure was required. We

created a Row class. Each Row object contains all of the data needed for a

single Row of the output, including the name of the item, its type, and, of

course, a set of its dependencies. Each DependencyMap contains a HashMap from

Strings to Rows. (This does result in a bit of redundancy, because the key in

the map is the name of the item, and the value, a Row object, also contains the

name of the item, but it was necessary to have that data in both places so we

could access the correct Row).

When a new DependencyMap is created, you can give it a default type.

This means that whenever it creates a new Row, it will give it that

type. This is very convenient because most items identified by a Parser will

have the same type (e.g. most of the dependencies identified by an AuraParser

will be for Aura Components). However, there are certain instances, mostly due

to bidirectional dependencies, where a Parser will identify a dependency for an

item with a different type. In this case, a third argument can be used in the

put() method, specifying the type. For this reason, for each of the four

possible pairs of inputs (String-String, String-Set, Set-String, and Set-Set), there are two

versions of put(), one that takes a type String and creates rows with that, and one that

just uses the default type for that DependencyMap.

The most important DependencyMap used by the program is the one in the main

class. This one mostly uses a version of put() that simply takes another

DependencyMap as an argument, and then adds or combines any dependencies from

the new map. Unlike the DependencyMaps created in the Parsers, it does not have a

default type, so all of its Rows just have a type from the ones made in the Parser

objects.

8

Finally, both the DependencyMap and Row classes contain an

updateFunctionNames class. When a parser identifies a call to a JavaScript function, it

has no way to determine the class or namespace that contains that function. However,

as each JS file is parsed, the program learns which functions it contains. By the end, it

builds up a large Map identifying which files contain which functions. This basically

gives it a dictionary, mapping the short name of the function (used in the function call) to

the full name of the function including the namespace and class names (expected in the

output spreadsheet). After running all of the Parsers and agglomerating the full

DependencyMap, it calls the updateFunctionNames() method, passing it this dictionary.

The DepenencyMap, as well as all of the Rows that it consists of, then use this

dictionary to update the keys and values of their own maps with the full function names.

Since the full function names are all consistent, dependencies from multiple Parsers

which actually refer to the same items are combined, which results in an extensive, but

non-redundant description of the dependencies in the code base.

dependencies.config

One of the most frequent problems that we ran into while developing the program

was that “dependency” is subjective, and the details of it can be very subtle. For

example, does an Aura Component depend on the JavaScript Functions that it calls, or

do the Functions depend on the Components to call them correctly? Or both? To deal

with this question, we made the program configurable. A dependencies.config file allows

the user to decide the details of what dependencies should be included in the output.

This meant that our client didn’t have to conclusively decide some of the finer details of

dependency while we were developing. Just by changing an ‘N’ to a ‘Y’ they can change

their mind at any time to decide what works best for them.

Figure 4: The dependencies.config file

The program reads the data (the Y’s and N’s) from the dependencies.config file

into a two-dimensional, non-rectangular, boolean array. The size and shape of the array

are based on the number of types of Parsers and the number of configurable settings

9

for each type of Parser. (When a new Parser is initialized, the appropriate array of

settings is passed to the constructor.) By setting it up like this, the user can add more

types of Parsers later on, or add more configurable settings to an existing type of

Parser, and just have to update one number. They don’t have to worry about it throwing

off other settings. This is an example of our program adhering to the open-close

principle.

The text before the colon on each line is ignored by the program. We put in text

that we believe clarifies what each setting controls, but because the program doesn’t

care about it the client can write whatever they think is the best explanation, and

optimize the file for them and their coworkers.

While we tried to make the reading of the config file as robust as possible (empty

lines, lines starting with a dash, anything before a colon, and extra lines at the bottom

are all ignored, and the Y’s and N’s are case-insensitive), there were a few things that

could not be ignored. This includes a missing config file, a config file with not enough

lines, or lines that don’t include a setting after the colon. While it would be easy to just

set any unknown values to a default, this felt like it could lead to problems. There would

be no way for the user to know that dependencies they want included are being left out

because the program isn’t telling them that their config file is wrong. To avoid this

problem, if any of those errors are detected the program outputs a clear error message

and terminates.

Parser

The heart of our program just comes to our parser class, and the children it has

spawned, which hold the actual functionality. The path we decided that would be best

for finding dependencies in the code was through different regular expressions. We

started off by figuring how a function is defined in both Aura and JavaScript, and then

moving on to finding out how these functions are, and can be implemented. Finding all

of these forms and implementing them into the form of a regular expression was the key

to being able to actually find the function names when traversing the files. After these

functions that belonged to other classes were found within files, we were then able to

put the function names into a map, where the file they were found within would be the

key. We found this would be the best way to keep track of all dependencies within a file,

as the key could be a file, and the values would be the functions found within the file

that were not defined in that file. This was our way of implementing the parser’s output

to ensure this would return a spreadsheet like our client had requested. This made

everything easier in the long run, as the map key and values could each be put in

respective columns, making the spreadsheet readable, and not having too many rows

for just a single file.

Software Quality Plan

10

As the quote by Alan Lakein goes, “Failing to plan is planning to fail”. There is no

exception within the creation of great software, and as such our team has a software

quality assurance plan. This covers not only how we wrote the code on a technical level,

but how our team functioned to assure we were running efficiently and effectively.

Through the below sections, our client can be certain that the code they received will be

of the highest quality we can provide.

Team Ideation

Before every meeting, we had the entire group do a scrum meeting to discuss

what we’ve done, what we plan to do, and what issues we have with getting there. After

this, we usually sat in a semi circle around a whiteboard, and went more in depth about

how we plan to accomplish our plans for the day with each other. These plans included

coding, writing team documents and other documentation, and structuring and

practicing presentations. We laid out what we would do, and how we should go about it

to everyone, so we were each given room to speak our minds and then receive

feedback on these plans. We were also clear on who would be working on what initially,

and mention how we would switch up roles throughout the day to ensure everyone will

have a hand in everything. This makes sure as much ideas were being spread as

possible, which allows for better solutions to be formulated and applied.

Client Check-ins

While our team initially was unable to make contact with our client due to him

having a surgery, we were able to keep him up to date with our moves constantly in the

second half of field session. This allowed him to give us feedback on how we were

doing, and updated requirements he may have for us. This has led to our team having

confidence in ensuring that we have met the client’s needs. He also had access to our

git repository, so he always had access to where we were currently at, allowing him to

demo our program with whatever tests he had whenever he pleased. Whenever we had

questions, we made a list and emailed them to him, and he was usually very quick on

responding, so it allowed us to not remain stuck for long, and we were able to move

forward with finishing our product.

Pair Programming + Code Reviews

Essentially all programming done for this project was completed in pairs. This

was to ensure ideas are able to be thrown around to ensure a more well rounded

deliverable, and someone will always be able to catch the other’s mistakes. We also

had constant code reviews, as two people were normally working on the code at one

time, so we often had others look at the code, and make suggestions. We often would

swap members out for coding during this time to ensure that everyone had a hand in

creating everything.

11

Programming Structure

To ensure our code is up to the quality standards required, we made sure to use

SOLID principles within our code. Specifically, the open closed principle and single

responsibility principle were often in discussion when we were moving on with our code.

We have an abstract class for our parser in the code, as we were creating parsers for

different languages. This ensures that the client will be able to add or remove parsers,

depending on their needs, and each parser is used for their individual language.

Due to our client’s surgery, we ensured that extensive documentation went into

our code, so we would be able to explain our thought processes and decisions that went

into the project. We also make sure to create our comments before our code, so we

keep on track with what we’re trying to make, and expand on the comments only if we

find we were missing something essential.

Programming Testing

 Since our program works on the backend of Salesforce, JUnit tests were able to

be written for most components of our code. We have used JUnit tests to ensure our

code is always functional and ensuring that we do not make modifications to our code,

as it would violate our previously created tests. A few specific JUnit tests we’ve

implemented include:

● testControllerName

○ This test ensures that we are getting each controller name correctly. This

is done by using a couple known controller names, and making sure they

are included in the map that is created when parsing for controller names.

● testFile

○ Ensures there is a file to be parsed.

● testFunctionBodies

○ Makes sure the file has the correct number of function definitions.

● testValidFunctionName

○ Makes sure the function name is a string, and doesn’t contain any key

words.

 Our client has provided us with spreadsheets and multiple examples of

Salesforce code, allowing us to have real examples of how our output should look,

along with code that would produce these outputs. He also had access to our code

himself, so he was also testing our code, and if he ever found anything major, he

mentioned he would notify us. This did not happen, as he did not find any major red

flags in our program.

Final Results:

12

The goal of this product was to create a program that finds the code-to-code

dependencies between files and folders used by Salesforce. In this, we have

succeeded. Right now, we have a working output that shows all code-to-code

dependencies in a .csv file, so it can easily be looked at in a spreadsheet. This includes

defining what type each dependency is. Initially, our client provided us with a hand-

made spreadsheet that showed us what our code should output, and we have managed

to automate the process and recreate exactly what was in the example. This is

excluding the last two columns of the given spreadsheet, but this is due to the client

specifying these contained data that would only be able to added manually. We did this

for all code written in JavaScript and Aura, as were the base requirements.

The components we were unable to implement were all stretch goals, which are

finding the dependencies from their code to their tests, finding dependencies from tests

to their code, and creating a parser for Java. These would be the obvious next steps for

continuing the project, with the Java parser most likely being the easiest thing to add.

Our client has shown us his work on creating the test to code dependencies, and based

on what we have been working with currently, we find this to be the logical next step.

Once this step is completed, the output can easily be reversed and used to find the

code to test dependencies, essentially finishing two steps at once. The tests we have

performed were to ensure that the baseline functions are working, but determining if our

final output is correct requires us to look at our output, and compare it to what our client

has provided us. With this, we have determined that our code has found all

dependencies for the code he has given us. The spreadsheet we were given includes

dependencies for code we do not have, which was obviously not found in our

spreadsheet, so looking through the file names we were given was required. Other than

the stretch goals and requirements we were given, there is not much room for

extensions, as the code we are creating is very specific to a certain need by Salesforce,

and the specific programming languages they use. The only extensions that would be

useful would be to create parsers for other languages that end up being picked up by

the company.

 From this project, a lot of lessons were learned by everyone when it comes to

actual software development. The biggest discovery is how vital communication can be

to the development of a product in the way the client desires. While having initial

requirements is a good baseline for building the framework of a project, being able to

communicate with your client about the specifics allows for development to progress

smoothly and without confusion. Another big lesson that was learned is how important

using SOLID principles are. The OCP and SUP made it incredibly easy for us to

implement parsers for both of the languages we were required, along with making

implementation of another parser incredibly easy. We initially had all parsers in one

class, but moving on to use an abstract parser class and create individual classes for

different functionality we were trying to implement made everything easier.

13

For this type of project, one that will not be fully finished in the amount of time we

are given, we found it was smart to create as much documentation as possible, and

ensure the language used will be something that is known by the person or team

carrying the torch of our program. This will save a lot of headaches for the next team,

and ensures they can start their development off running.

In conclusion, the Salesforce File Dependency project was a success on the

basis of the requirements stated from the beginning. We found that being unable to

communicate with our client in the first couple of weeks slowed down our work, due to

our lack of confidence in the project’s direction we were moving it into. But, after being

able to make contact again, we made suitable progress, and were able to finish up what

we were supposed to. If given a bit more time, we may have had time to implement all

the stretch goals, since one stretch phase was so similar to a different one. Overall, this

was a project everyone was able to learn from, and we are proud to deliver the code we

have come up with.

Appendix:

Using the program:

The following program is run through the command line. The format for running

this is java Salesforce1 [folder] [folder] should be a relative or absolute path for the

folder containing the files for which you would like to find dependencies. After the

program runs, you will be prompted to enter a filename ending in .csv If the file exists it

will be overwritten, if it does not it will be created This will contain a table of all

dependencies, and should be openable in any spreadsheet reader. Column A will

contain the name of a file. Column B will contain the type of file in column A. Column C

will contain the file dependencies associated with the file.

#Config File The dependencies.config allows the user to decide the details of

what dependencies should be included in the output Empty lines or lines starting with a

'-' will be ignored The program will terminate if there are not enough lines, but any extra

lines will be ignored The NUM_CONFIGS array in main defines the number of settings

in the config file for each type of parser Configurations are determined by the presence

of a 'Y' or 'N' after the colon Anything before the colon is ignored by the program

Code Conventions:

We used standard Java coding conventions for our program. This can be

assumed to be the case for any class within our code.

Response to Feedback:

We have generally left the introduction unchanged. About half of the feedback we

received said our introduction was fine, but one of the reviewers said it needed more

14

detail, and another said it needed less detail. Since half of the reviewers were okay with

it, and the other views were conflicted, we felt it was a safe bet to keep the intro as is.

A lot of the feedback came down to our technical document being a bit confusing,

and the tense of some of our paragraphs being different than past tense. We believe we

sufficiently resolved these mismatches.

We were also unable to receive permission from a member of the group before it

was time to submit, so his views weren’t able to be taken under consideration. We do

believe we had sufficient feedback from the others though.

