

Golden Fire Department

Volunteer Firefighter Information Tracking

June 18th, 2019

Hannah Levy

Bradley Helliwell

Heidi Hufford

Connor Brennan

Ty Christensen

2

Contents

1 Introduction 3

2 Requirements 4

2.1 Functional Requirements . 4

2.2 Non-Functional Requirements . 5

3 Project Overview 5

3.1 Administrator View . 5

3.2 Officer View . 6

2.1 Firefighter View . 6

4 System Architecture 7

4.1 Django Framework . 8

4.2 HTML Framework . 9

4.3 Database Design . 10

5 Technical Design 12

5.1 Data Handling . 12

5.2 User Authentication . 12

6 Quality Assurance 13

7 Results 15

7.1 Unimplemented Features and Future Work . 15

7.2 Testing Results . 15

7.3 Lessons Learned. 16

3

1 Introduction

 The Golden Fire Department is a volunteer department, serving the 50,000 people

who live, work, and learn in Golden. The fire department is responsible for rescues,

emergency medical services, fires, service calls, and hazardous conditions across the nine

square miles of Golden. Comprised of 87 volunteer firefighters and 12 administrative

staff, the department responds to more than 100 calls each month, which totaled to more

than 2,000 calls in 2018.

 The Golden Fire Department faces severe staffing issues, suffering from a lack of both

coverage and consistency. The coverage issues result from the high proportion of

volunteer emergency response staff, causing the Golden Fire Department to have

particularly low staffing during business hours when the volunteers are at their regular

jobs. Staffing inconsistencies result from procrastination, making the fire department

shorthanded until the end of the year when volunteers are rushing to meet their annual

requirements. For the fire department, chronic understaffing causes an increased

response time, especially during overlapping calls, when there are often too few

firefighters to fully staff each response.

 In addition to problems with staffing, the fire department uses inefficient means to

track progress for each of their firefighters. To remain in good standing, volunteers must

meet a set of requirements by the end of the year. Their progress reports involve days of

manual data entry from multiple sources and are often inaccurate due to human error.

Because the reports are so time-consuming to construct, administrators and firefighters

are only able to review their progress a few times a year, making it impossible to address

individual staffing issues on a regular basis.

 To solve this problem, the Golden Fire Department requested a system to generate

these reports for the administrators and officers and to create easily accessible progress

reports for individual firefighters. The team’s solution was to create a web-based

application and database to pull, process, and display the necessary information with

minimal administrative labor.

4

2 Requirements

 Functionally, the Golden Fire Department Information Tracker is required to facilitate

data access and generate accurate progress reports for each of the fire department’s

staff members. Below, each of the specific requirements is listed as determined in weekly

meetings with the Golden Fire Department.

2.1 Functional Requirements

• Website–All information should be accessible online.

• Design–The website must have an appealing color scheme with few white

backgrounds to prevent eye strain.

• Dashboard–The website should display a dashboard interface for administrators

and officers.

• Documentation–Each view of the website must contain an about page to explain

how to use the website.

• Reports–The system must generate accurate reports regarding progress on

requirements and length of service.

• Firefighter Statuses–Firefighter progress must be measured with statuses of either

Complete, On Track, Falling Behind, or Behind.

• Security–The website must be secure and contain a login system.

• Data Access–Administrators should be able to view and edit data for all

firefighters, officers should be able to view information for firefighters, but not edit

it, and firefighters must only be allowed to view their own data.

• Data Storage–The database should be able to handle up to seven years of prior

data as well as all necessary future data.

• Data Entry–Administrators must be able to initiate a database refresh, upload

IAmResponding reports, and manually enter or remove status changes for

firefighters.

• Automated Data Entry–The database should automatically update data from

Emergency Reporting upon administrator login.

5

2.2 Non-Functional Requirements

• AWS–The website must be hosted on Amazon Web Services.

• Emergency Reporting–The system must collect data from Emergency Reporting

through its API.

• Security–The system must implement basic database security procedures.

• Modular Design–The project should be written using a modular approach to allow

for upkeep and extension.

3 Project Overview

 The Golden Fire Department Information Tracker pulls information from two of the

department’s data services, Emergency Reporting, and IAmResponding. Depending on

the staff member’s title, they are presented the data in one of three views, as detailed in

the following sections.

3.1 Administrator View

 Administrator access is granted to the fire chief, the executive assistant, and other

managerial staff. Administrators can access six pages: Home, Reports, Custom Reports,

Personnel, Import, and About. As shown in figure 1, the homepage shows a dashboard

with a snapshot of firefighter progress and year-to-date statistics about the call volume

and response availability. The report page allows administrators to generate either

standard or LOSAP (Length of Service Award Program) reports for either a single

firefighter, a group of firefighters, or the entire department. On the custom reports page,

administrators can view time logs for any employee. The personnel page allows

administrators to log status changes, and the import page can be used to import reports

from IamResponding and initiate a database refresh for data stored in Emergency

Reporting.

6

Figure 1: Administrator Homepage

3.2 Officer View

 The officer view is designed for supervisory staff members who oversee volunteers.

The pages that they can access include the Home, Reports, and Custom Reports, which

each have the same functionality as the administrator view.

3.3 Firefighter View

 The firefighter view allows volunteers to view their own progress and was designed to

motivate them to volunteer consistently throughout the year. As shown in figure 2, the

top of their homepage shows the firefighter’s status. This status is calculated based on

the completion status of each of their six requirements: training, work detail, apparatus

checks, business meetings, fundraisers, and either calls or shifts depending on their

residency status. Below the general status is a progress chart, showing completed

requirements in blue, incomplete expected progress in red, and gray indicates

requirements that are not expected to be completed. The table below the general status,

as shown in figure 3, indicates a volunteer’s progress towards each of their requirements,

each with charts showing where they stand.

7

Figure 2: Firefighter homepage

Figure 3: Firefighter progress chart

4 System Architecture

 The system architecture is divided into three main sections: a Django framework, an

HTML organization, and a database. The following sections detail the design of each

section.

8

4.1 Django Framework

 At the core of the system lies the Django framework, which is responsible for

integrating the HTML, CSS, and Python files. At a high level, the Django project is divided

into a central project module and several apps, each corresponding to one core function

of the website. Each app contains a views.py and urls.py file, along with HTML templates.

The views Python file determines what behavior should occur if a user navigates to or

interacts with a webpage in the app by handling the HttpRequest and HttpResponse

pairs. The urls.py file is used to send the HttpRequest objects to the appropriate views.py

function based on the URL being accessed. The urls.py mappings also capture pieces of

the URL and use them as parameters in the views functions. The views.py function takes

in the information from the call from urls.py and builds an HttpResponse object, which it

then returns. In this project, HttpResponse objects are built in one of two ways. In the first

and most common way, the views.py function loads in an HTML page to be used as a

template. It then processes data from the request and function parameters as needed

and creates a dictionary of context containing name-variable mappings for data that

needs to be passed into the HTML. The function then returns an HttpResponse object

with the rendering of the template with the context and the initial HttpRequest object. In

the second way, the function creates an HttpResponse object with the content_type set

to ‘text/csv’. It then builds a CSV file in the HttpResponse. When this HttpResponse is

returned, the result is the CSV file being downloaded onto the user’s computer. These

two methods reflect how the system handles rendering webpages and generating CSV

reports that can be downloaded by the application user.

 The central project module contains the information necessary for the project to run.

The module contains the settings.py, which file contains information about allowed hosts,

acceptable middleware, logging, and the location of the WSGI application. Additionally,

each app in the project is registered in this file. The module also contains the manage.py

file which is used to launch the application locally, create new apps, and collect the static

files, amongst other core functionality. The central project module also has its own

urls.py file, which contains URL mappings to each of the apps and their urls files.

9

 Outside of the apps and the central project module, there are three other directories

that contain key components of the application. The templates directory contains the

HTML templates, and the static directory contains CSS and image files used by the

website. The source directory contains all functions and classes used to access the

database and the Emergency Reporting API and process the data.

4.2 HTML Framework

 The HTML files define the basic functionality of each webpage. As shown in figure 4,

there are five main pages: Home, Reports, Custom Reports, Personnel, and Import. The

common functionality for each view (administrator, officer, firefighter) is stored in a base

file. The HTML files for each individual page inherit functionality from these base files.

This code hub helps lower the amount of repeated or unnecessary code and helps allow

for modular development. The CSS files are also all kept in one folder. Each page on the

website grabs from these CSS files to determine their font size, text color, padding, and

other important styling aspects. Keeping the CSS and HTML in separate files helps the

code to be modular and consistent.

Figure 4: Website Flow Diagram

10

 Since administrators, officers, and firefighters each have a different view of the

website, there are different sets of pages based on their access levels. Some pages are

specific to administrators, like the personnel and import pages. Because of this, each

navigation bar has different tabs. Since error pages also have a navigation bar, this

required the team to create three different error pages based on the three access levels.

Although there are different views, each page grabs from the same image folder,

containing the background images and the fire department’s logo. In general, the HTML

framework was constructed to reduce repetition and simplify the process of developing

consistent style and functionality.

4.3 Database Design

 The database is designed to hold all the information needed to generate reports and

support the functionality of the website, using five main entities, as shown in

figure 5.

 The Person entity is a sort of hub. Every other entity is related to this one in some

form. It tracks a person’s official employee ID, their name, their current rank in the

department (such as firefighter, shift officer, or chief), and whether they are considered a

resident.

Figure 5: Database ERD

11

 The Shift entity tracks all shifts worked by firefighters. Due to the loose scheduling

structure this department employees, each shift object is specific to one and only one

person. It tracks that person, the start and end times of the shift, which station the shift

was worked at, and if there was any associated bonus (such as a shift being worked on a

weekend or holiday).

 The Person_Status entity tracks each firefighter’s status changes. When a person is

first entered into the database, they will typically be given an “active” status change,

which marks the beginning of their service. New entries will be added any time a

person’s status changes (such as going on leave, returning from leave, or retiring),

forming an easily accessible service log. It tracks the person a status change is

associated with, what the status is, the date it was changed, and has an optional note

field if the administrators want to keep track of additional information regarding the

change.

 The Event entity stores information regarding work details, fundraisers, and business

meetings. It tracks an ID generated by emergency reporting, the start time for the event,

and the event type. There is a cross-reference table that connects event and person so

that each person can attend many events and vice versa.

 The Class entity is used to track training events. Since these events were stored in a

different place in emergency reporting, their ids could overlap with ids from events, so

they had to be made a separate table. It tracks an ID generated by emergency

reporting, the start time for the class, and the class type. There is a cross-reference table

that connects class and person so that each person can attend many classes and vice

versa.

 The Incidents entity holds information regarding incidents that the fire department has

responded to. It tracks an ID generated by emergency reporting, a timestamp for when

the incident started, an incident type, and the response time. There is a cross reference

table connecting it to the person, because each person responds to many incidents, and

incidents are responded to by multiple people.

12

5 Technical Design

5.1 Data Handling

 The majority of the data used by the team’s web application originates from

Emergency Reporting, which stores information regarding personnel, training, incidents,

and work details. Before being stored in the database, Emergency Reporting’s

information is collected using their API. Initially, the API caused long loading times each

time the database updated. To resolve this, the API is called when pulling new

information and is compared against the information already in the database. If the two

sets contain the same data, nothing is done. Otherwise, the new information is uploaded.

This reduced the amount of time the system spends waiting on network communication

by putting more load on the server’s hardware. This proved to be much more efficient

than making multiple API calls.

 Unlike the other entities, the data in the Shifts table can only be obtained from

IAmResponding. Since IamResponding does not have an API, the only way to retrieve the

data is to manually generate a scheduling report and then upload it to the Golden Fire

Department Information Tracker. The contents of IamResponding’s reports are processed

into a data frame using the panda’s Python module. From the data frame, the Python

code parses and reformats the information before feeding it to the loader function. As a

result, all the users need to do is run a report and upload it to the web app’s import

page.

5.2 User Authentication

 To protect the Golden Fire Department’s data, a system for user authentication was

needed. The easiest and most effective way for the team to integrate this was to pull

from Emergency Reporting’s user authentication system. The base URL for the project

was directed to a login screen. The clients are able to sign in with their Emergency

Reporting credentials. Once this data is entered, the system prompts the Emergency

Reporting API for an access token and a refresh token based on these credentials. If the

API returns a successful response, the user is considered authenticated and can continue

13

onto the website. The access token is then used to retrieve the user’s title and employee

number from the API, which is then used to redirect the user to the correct page. The

refresh token is sent in the URL whenever a request is made to move to a different page.

Upon entry to the page, the refresh token is pulled and sent to the API to verify that the

user can still be authenticated. If the authentication is successful, the requested view is

rendered. If the authentication fails, the user is logged out and prompted to sign back in.

6 Quality Assurance

 Below is a list of quality assurance steps the team took to make sure the product not

only met the functional and non-functional requirements but also provided accurate and

up-to-date data.

Software Quality Plan:

• Unit testing Python code with, including functions that interact with the database

o Using the Python Unittest library

• Website Tests

o Ensuring that all links direct to the correct pages

o Testing the forms on each page to verify that they function properly

o Ensuring that unexpected inputs do not cause unintended problems

▪ Inputs are validated before being sent to the database, so they are

guaranteed to be quality

o Opening the webpage in different browsers (Edge, Chrome, Firefox, Safari)

to verify that the website’s style and functionality remains consistent.

o Ensuring that all CSVs download correctly

o Validator for HTML, CSS, and JS (W3C validation service, shown in figure 6)

o Testing API output against expected results

14

• Following good code standards

o Maintaining only one CSS id per HTML page

o Lower case element and attribute names

o Consistent spacing and indentations within code

o Comments where necessary

• Demo to clients, get feedback, and ensure the product is on-track (user-

acceptance testing)

o Easy navigation around the webpage

o General appearance, no white backgrounds, larger fonts, readable color

scheme

o Making sure the web page fits different screen sizes and screen resizes

▪ Specifying size by % and vw instead of pixel width/height

o Mobile compatibility

• Pair programming and team development ensures good software development

Figure 6: CSS Validation

15

7 Results

7.1 Unimplemented Features and Future Work

 One desired feature left unimplemented was total automation for data collection.

Ideally, the system would have used APIs to access all data and those APIs would be

used to update the database every night at midnight through a function hosted in AWS

Lambda. This feature was not implemented due to resource limitations and security

concerns. One of the websites the system needs to access, IAmResponding, does not

have an API, so an administrator will need to download a report from that site and

upload it to the tool. Emergency Reporting does have an API, and the fire department

would have liked the team to automate updating the database on a nightly basis, but this

would require hard-coding an Emergency Reporting username and password in the

code, which introduces security risks and additional complexity. As a compromise, the

database updates when administrators log in and older records can be added to the

database using a button on one of the pages.

 For future work on this project, the Golden Fire Department Information Tracker could

be extended to construct reports containing descriptive statistics about the fire

department. Initially, the fire chief had discussed with the team the possibility of

generating such reports, which would be persuasive tools to help the department receive

funding to hire additional career firefighters. Extending the project to include this

functionality would involve accessing reports from When2Work and writing queries to

generate these reports.

7.2 Testing Results

 The web application parses through a large amount of data that is generated by the

Emergency Reporting API. Originally the code relied heavily on many requests for

information from the API which proved to be incredibly slow. Since this code is being run

when an administrator logs into the web application, this was unacceptable. To resolve

this, an algorithm was implemented to reduce the number of API calls and rely more on

computation. One example of this is used in the function that populates the database

16

with incidents. Previously, an API call was made to retrieve each incident, but

performance testing showed that this took too long and was not feasible. Now the API is

called four times to gather all the information needed and then search algorithms are

applied to a list to find the desired information. Performance testing showed a significant

improvement with a reduced load time from more than six minutes to less than ten

seconds.

 To test the user interface, the team tested the product website in multiple different

browsers, including Chrome, Firefox, and Edge to determine if the formatting was

consistent and easy to read. Although the tool was not written as an app, the team

tested the site on mobile devices to ensure that firefighters could access it from their

phones or tablets.

 When performing usability tests, the team received a positive response from the

firefighters and administrators at the fire station. The administrative assistant was excited

to see how quickly the tool could generate reports for all staff members. Additionally,

each administrator who tested the website confirmed that the tool functioned in the way

they needed it to, and the chief commented on how much she liked the graphics. When

a firefighter logged into the website, he commented that he thought it was simple to use

and easy to read. After giving them the link, they distributed it to the rest of their staff

members, who identified several bugs and provided feedback about the color-coding on

the firefighter homepage. Listening to user input made the website more user friendly

and have fewer errors.

7.3 Lessons Learned

 Completing this project made it clear how important it is to research and select

services wisely. One of the City of Golden IT Department’s employees suggested the

team use Amazon Web Services (AWS) to host the website. Initially, the team trusted his

suggestion and attempted to host the website on AWS but found that the

documentation was outdated and that receiving assistance from Amazon was difficult.

The team learned that more extensive research should have been done; no one at the

17

Golden IT Department had ever used AWS and had just recommended it based on

Amazon’s reputation. Had alternative services been researched, the team could have

saved several days’ worth of work.

 Another lesson from this project is that maintaining product and sprint backlogs are

important. While working on the project, the team found that it was easy to prioritize,

plan, and allocate tasks when there were backlogs. Having a shared and documented list

of remaining tasks also made the team more productive because it was easy to see how

the team was progressing and how much work was left.

 The last lesson learned from this project was the importance of communication.

Specifically, when performing usability tests, it’s important to communicate the

functionality that the users can expect to see, and what functionality has yet to be added.

When the team gave the fire department the URL to the website, they distributed it to

their employees and asked for feedback. The team received several reports that parts of

the website were not working for parts that the team hadn’t completed working on yet.

The team learned to be very clear about what the user should expect so that their

feedback is more relevant.

