
	

Data Verity Inc.
Automated Testing
Suite Final Report

June 18, 2019

Data Verity Team #1

Cameron Kuan, Grant Marsh, David Fresco, Eric Klatzco
Client: Brian Flannery

	 1

Table of Contents

Introduction 2
 Client Information 2
 Product Vision 2

Requirements 2
 Functional 2
 Non-functional 3

System Architecture 3

Technical Design 4
 Record 4
 Playback 5
 Comparison 5
 Database Tables 6

Quality Assurance 6
 Version Control 6
 Integration Testing 6
 Architecture 6
 Pair Programming 7
 Code Review 7
 User Acceptance Testing 7

Results 8
 Features Not Implemented 8
 Summary of Testing 8
 Results of Usability Testing 9
 Future Work 9
 Lessons Learned 9
 PHP 9
 JSON 9
 Agile 10

Appendix 11

	 2

INTRODUCTION

Client Information

Data Verity, a Colorado-based company founded in 2006 by brothers Gordon and David
Flammer, develops enterprise-level customer relationship management and business intelligence
tools. They mainly work with consulting firms and financial institutions to make state of the art
cloud-based solutions. The company has worked on projects such as full CRM enhancements,
predictive analytics, and many more. The project “Automated Testing Suite” is focused on the
idea of creating a way to automatically test existing web database applications. It is necessary to
make it easy for a developer to validate their own changes before suggesting merges. This will
allow developers to start making changes without fear of accidentally causing bugs.

Product Vision

The goal of this project is to create a system with which function executions can be recorded,
then played back under the exact same conditions to compare the outputs. The results of the
playback are compared to the recorded output to ensure the functionality of the code has been
preserved. Due to the nature of the large web application base, there are many types of inputs
and outputs relevant to each function. Function executions may rely on global variable states,
user session information, or even database information stored in a local cache. This is, of course,
in addition to the widely varied types and numbers of arguments that each function can
potentially supply. The main challenges of this project are efficiently and effectively storing
inputs and outputs as well as relevant memory states at the beginning and ends of the function
execution. Addressing this problem means storing all the relevant data in a database in a way that
maximizes both space efficiency and access speed.

REQUIREMENTS

Functional Requirements

Given individual credentials to the company’s main server, the team will write PHP testing
classes that will record and replay the arguments passed to tested methods. One method will be
called at the beginning of a function that records arguments, a start time, and other state
variables. Another method will be called when a function returns to record the return value,
execution time, and other state variables. In addition to this functionality, the testing suite will
also be able to record changes in pass-by-reference variables, and any errors thrown as part of
the logic flow of the website. The team will also need to test the suite in order to ensure that
appropriate exits occur for every function as well as other integrity tests to ensure that tests are
viable. Finally, another script is needed that can replay tests that have been recorded. The
purpose of this script is to distinguish which function outputs differ from the expected outputs
stored in a database and to keep track of performance improvements/degradations. A stretch goal
is to port the code to JavaScript in order to be able to use it on the client side.

	 3

Non-Functional Requirements

While the core of the usefulness for the system lies in the back-end software, in order to interpret
returned data, there must be a cohesive front-end. The system needs to be easily interpretable by
the user in order to quickly identify and rectify errors. The data also needs to be consistent and
both store and return the necessary information. Lastly, the system needs to be built within Data
Verity’s codebase and be easily implementable into their pre-existing code.

In addition to having an easily usable and implementable system, the team was also tasked with
minimizing memory and data abundance. In order to accomplish this, the team must have their
functions run as quickly as possible and using as little resources as necessary, as to not interfere
with preexisting workflow. The database that stores all necessary testing data also needs to be
designed as efficiently as possible as to minimize the amount of total data storage it requires.

SYSTEM ARCHITECTURE

In Figure 1 below, the team outlined its initial design for the project. At first, there were going to
be seven separate database tables consisting of inputs and outputs of normal functions, the
database, and the cache along with an error table, all holding their own state variables. In the
terminals, the team could also access the database information by directly using MySQL. In
order to test the code, the team utilized the company’s admin website to make sure tests were
passing or failing.

Figure 1: Initial Project Design

	 4

As the team began to understand the project more, the initial project design was deemed too
complex. Instead of creating seven different tables that would all hold similar components of
function execution, two database tables were created. These two tables, the recording and
comparison tables, were the only necessary tables needed for the suite. The recording table holds
most of the necessary elements needed when running the testing suite. The parts in the
comparison table are necessary in order to specifically identify modifications made to the code.
Figure 2 below is the final table design.

Figure 2: Final Table Design

TECHNICAL DESIGN

Recording

The recording aspect of the testing suits had to record arguments and state variables relevant to a
function’s execution and store them in a database. The initial solution involved tracking function
executions from a static context. However, this soon posed a few big problems for the
multithreaded workload the team would be testing. Because multiple functions can be executed
at once, the suite would also require a set of active function executions. Upon termination of a
function, the suite finds and remove the function from the set. This solution added a great deal of
complexity and scaled very poorly as the number of functions in the air increased. Furthermore,
a severe problem would be encountered when two instances of the same function executed at
once. More than likely, the instances would collide and corrupt each other unless a timestamp is
stored as a scope variable in the function and supplied at the return in order to distinguish one

	 5

execution from another. However, this could be unreliable in a system that potentially receives
thousands of requests every minute.

While considering these obstacles, the team realized that scope variables that are local to a
function would be required regardless. In order to mitigate the collision problem and do away
with the confusion of which scope variables would be required at once, it was decided to
instantiate a Record object in the scope of a function in the very first line and call its “finish”
function the line before the return statement. The finish function records outputs and writes the
finished test to the table. This means each function execution handles its own recording, and
each instance of its execution is unique from the next. This solution eliminates the need of a big
set to track active function executions because once the function returns, the relevant data that
was already recorded, and its associated memory, is freed automatically by PHP garbage
collection.

Playback

The goal of the playback function is to replay functions that utilize the testing functionality and
run the results against those stored in the database. This was accomplished by accessing the
database and determining if the table of recorded tests exists. Then, the function checks if the
table is populated. Once it is determined that the table is both in existence and populated, the
suite is then able to use the saved class name, function name, namespace, and JSON encoded
arguments to re-instantiate the method to be tested. Re-creating the exact program state that the
function was recorded under, however, was more difficult than simply running the method with a
given set of arguments. For example, if a member function, object contains unique constructor
arguments or references other member variables, the suite would be forced to record those
separately in the record class in order to playback an identical test.

The playback function is able to access the information needed to find a function from a specific
class and under a specific namespace using recorded information within the table. In addition to
this information, playback is also able to access both member variables and constructor
arguments. These are a few things that would fall outside of the scope of arguments and returned
outputs, and re-create an almost identical instance of testing a function. Once the return value is
recorded, or an exception is thrown, the suite is able to compare that value to the pre-recorded
value, and determine if the functionality of a tested method has changed based on what is
returned.

Comparison

The goal for this project was not only to compare return values for functions, but also note
execution time, database outputs, pass-by-reference variables, and errors. Not only is this
comparison aspect useful for checking to see if anything broke, but confirming that
modifications to functions are working properly by providing expected and received outputs.
Another feature is the comparison of execution times. Should a function still produce the right
outputs after modification but take twice as long to execute, the modification was not as well
written, as it impacts the efficiency of the program. In this way, the comparison features serve as
a tool to assist in the refactoring and improvement of the code, not just its validation.

	 6

Database Tables

There are two tables that the testing suite uses to properly function. The recording data table
stores all data needed to replay a test. This includes an identifying hash ID, plaintext class and
function information, arguments, outputs, instance variable states, and errors. The recording data
table is used as the base point for comparison. The comparison data table holds all information
relating tests once they have been played back along with identifying information, such as the
hash. It permits for easy reading and recording of passing and failing tests, along with the
difference between the recorded and actual tests.

An important part of the table and suite design is the hash ID, which is composed of the
namespace, function and class name, along with the function arguments. The hash is made using
the ‘md5’ algorithm. It allows for the suite and its tables to be both efficient, accurate, and
precise. As any given function has the three naming conventions, queries do not have to be based
around a certain name or random key, and thanks to the use of the function arguments, multiple
tests can be made on just one function. Thus, pulling a row from the database only requires a call
to a hash-making method and a company-made querying method. Finally, as the ID is the
primary key in the recording table and foreign key in the comparison table, there are no storage-
wasting duplicates.

QUALITY ASSURANCE

Version Control

For version control, the team was given individual checkouts to access the company’s database
in order to separately work on the components needed for the project. Data Verity uses
Subversion, a version control program nearly identical to Git. With separate checkouts, the team
was able to transfer the latest and best working files amongst each other while also being able to
develop smaller sections of the project.

Integration Testing

The created code had to integrate well with the company’s existing codebase and database. Thus,
the team required a way to be sure that all bits properly functioned when placed together. Due to
the nature of this project, there was little need for unit testing, but a heavy emphasis on
integration testing. Since the basic structure or architecture of the project consisted of four main
components: record, playback, comparison, and database, unit testing simply consisted of echo
statements or test queries. Integration testing was needed so that the team was able to find any
bugs within the interactions between the functioning classes in developed code.

Architecture

Architecture played an important role in the team’s plan as the software needed to run efficiently.
Almost everything the team designed was run through project manager Brian Flannery and his

	 7

colleague, David Flammer. Seeing as how the team accessed the company codebase to only add
in a testing application, it was of utmost importance for the project manager to approve the
team’s ideas for how the suite should be built. Everything was designed with the Open-Closed
Principle in mind, with the exception of a table-making class. The table-making class should
remain the same and the team did not see the need to have a great deal of parent/child classes
that would only build a part of a table. Instead, the focus was more on have the functionality and
making sure that Data Verity could easily expand upon the code if need be.

Pair Programming

With the practices learned in Software Engineering (CSCI306), pair programming helped the
team minimize the amount of duplicate work done and decrease the number of possible bugs in
the code during product development. Furthermore, the team was able to work on different
aspects of the project and tailor the work towards those who have more knowledge in the area
while allowing for those with less experience to learn along the way. Additionally, by pair
programming, the base stage of the application was developed quickly so that any new features
would be established on a sound foundation.

Code Review

Code review goes hand-in-hand with pair programming because it allowed the team to refine
their already working code and put all members in an equal understanding of the project’s state.
Since the team was working in separate checkouts, once the goals of a weekly sprint were
complete, Subversion was used to make sure everyone had the same updated, working version of
the code in their own directories so that copied and pasted code that did not work was avoided.

User Acceptance Testing

User Acceptance Testing was the most important part of the team’s QA plan, as passing it
essentially meant that they passed their finish line. Since the project was based on the server-side
and solely ran by their client, it was integral that their solution met the following requirements:

1) Was usable by Data Verity.
2) Met required specifications.
3) Caused no trouble to use.
4) Behaved properly and worked how the team expected it to, i.e. bug-free.

The application should meet the given requirements before the team could even consider user
acceptance testing, as this should just be fixing anything minor. Thanks to the Agile method, user
acceptance testing was done on almost a daily basis by members of the Data Verity team through
conference calls or office visits. Unfortunately, full user acceptance testing was never completed,
which will be elaborated on in the ‘Future Work’ section.

	 8

RESULTS

Features Not Implemented

From the team’s initial plan, the features not implemented would be the testing of database and
cache inputs. When discussing with the project manager, the team was informed that the two
would require a great deal of work and learning and that there was not enough time to complete
this feature. Besides this, flawless PHPUnit use was not established. The testing suite did not
permit for the session information to be altered after echoing a statement, which would break
session management.

While the initial plan was to do comparison through PHPUnit, this idea was eventually scrapped
for a few reasons. Firstly, the existing infrastructure at the time the project was being worked on
was not able to give PHPUnit a database connection. Since PHPUnit is usually initiated through
the command line, its runtime contains none of the session or user information that is required
when functions are called through the website’s user interface. This means its runtime lacks the
authentication needed to connect to the database. Another issue plaguing the PHPUnit interface
is the fact that its strict, no-warning policy prohibits testing pass-by-reference variables. Instead,
invoking the functions through PHP Reflection would mean that pass-by-reference variables are
supplied as constants. This method would not crash the program, but would still throw a
warning, which PHPUnit treats as an error.

Summary of Testing

When testing the automated testing suite, the team had two options; they could have used either
Data Verity’s admin website or the command line. Since the project was in PHP, a terminal
based language, there were no actual debugging tools making it difficult to search for bugs if the
tests failed in any fashion. So, by default, the team would write echo statements inside the code
in order to make sure certain lines before and after said echo statement executed the way that
was intended. By using the echo statements, using the admin website was the usual way of
checking the results of executing the code. The other main way of testing the code was to
directly use the command line within the terminal. This would be done by either directly printing
the output or using MySQL in order to check if the database was properly updating. Regardless
of which method of testing was used, if an unexpected error was detected, the team had access to
the error log and the admin log to specifically find what went wrong within the code. This was
the lone method of searching for a specific error within the code.

Results of Usability Testing

After completing the project, it was shown that the testing suite worked with both sample code
that the team created, along with ‘apps’ already in use by Data Verity Inc. One such example is
Parser.cls.php, which is able to break up any given message, including comments and newlines.
The suite properly reads all namespace, class, and function information while also taking in
arguments and the appropriate outputs. Minor changes to the Parser code also proved that the

	 9

suite was able to detect when playback outputs failed to align with the previously recorded
outputs.

Future Work

In terms of future work, it would start at the features not implemented. While the suite does work
as expected, it is not functional for changes to the database and cache. In terms of User
Acceptance Testing, while the team was constantly checking and confirming with the project
manager and his partner, they did not have time to implement their hooks into a large amount of
the code base, which would be the end goal of the project’s implementation. Another goal for
future work would be porting the whole project to JavaScript, as mentioned previously as a
stretch goal, which would allow for client-side testing.

LESSONS LEARNED

PHP

As the team was very new to PHP, solving basic problems with the web programming language
proved quite difficult. At times, the issues arose simply due to lack of knowledge on the proper
syntax to accomplish simple tasks. This problem was sometimes exacerbated by the confusing
notation used in the online PHP documentation. Once the team became accustomed to the
strange and beautiful nature of the language, productivity picked up very quickly thanks to
PHP’s large number of reflection-related features, e.g. special constant keywords that will return
the name of the function the keyword is used in. Another big stumbling block involved the use of
the “$” character, which is used to denote a variable, and the replacement of the dot operator
with the “->” arrow symbol. The dollar sign character is only used in front of scope variables,
not member variables of an object. This caused a long bout of confusion when trying to access
member variables, mainly in situations like when trying to access properties of a Record like
“$record->$args” instead of the proper syntax, “$record->args”. These syntax quirks found in the
unholy amalgamation of bash, JavaScript, and C++ that is PHP combined with debugging
methods limited to what is provided by Vim and an error log resulted in a very slow learning
process.

JSON

JSON, or JavaScript Object Notation, was a very useful tool in the project. JSON allowed the
team to encode any array of primitive data types into a format that could be perfectly decoded
when needed. This format was used to take arguments, outputs, member variables, and
global/session information and condense them into a heap of text that could easily be stored. It
removed the worry of having a table with an extreme number of columns just to accommodate
any amount of inputs (for example, creating fifty argument columns just in case a function had
fifty arguments). Instead, all arguments were encoded through JSON as an array, becoming one
blob of text which could be decoded later once pulled out of the database.

	 10

Agile

Even after learning the Agile principle in CSCI 306, the principle was not well understood by the
team. However, after the duration of this project using the Agile method, it has proven to be
quite useful. By participating in daily stand-ups and weekly sprint planning, the team was able to
recognize what the week’s goals were and accomplish these goals very efficiently with special
help from a specific Agile principle: The War Room principle. This principle applies when a
development team is in the same room working as a cohesive unit in order to facilitate
communication, problem-solving, minimize errors, and give updates to the client. Working
together at the same time allows for individual team members to continuously check and update
each other’s code to ensure few bugs are created as well as writing clean code that is not too, in
the words of Prof. Mark Baldwin, “smelly.” The War Room principle was used throughout the
duration of the project as the team always worked together in the same room whether in the
Alamode lab or at the Data Verity office.

	 11

APPENDIX

The application has two needed lines of code to be injected into any given function. The first is
the general hook to be placed right below a function declaration:

 $rec = new Record(func_get_args(), _METHOD_, isset($this) ? $this : NULL);
This hook requires no function-specific information to be added, as it just pulls any arguments,
gets the function path, and determines if it is static or not.

Before any return or throw statements, the following hook is needed:

 $rec -> finish(array(return_args), array(reference_vars), “error_msg”);
User modification is required for this hook. The application expects some sort of return
argument, be it an array or a simple input (like an int or string), but will also accept a null. The
reference variable argument is null by default and is only needed when the user wishes to also
keep track of any variables that were passed by reference. Finally, the error argument should be
used before a throw statement to take in whatever the error message will be. It too is set to null
by default.

If the function being tested belongs to a class that requires constructor arguments for
instantiation, setConstructor function must be called in the first line of the constructor:

Record::setConstructor(func_get_args(), $this);
This allows the test database to store a sample constructor that will be able to properly instantiate
an object during playback. This line is required regardless of whether or not the function being
tested is static.

To have the application record tests, navigate to the Test App folder, which is within the ‘App
Management’ tab of the Admin Manager. There can be found the commands to enable and
disable the testing mode, along with a command to run the test playback, which will output
passes and failures.

All information can be found in the tables ‘test_recordingdata’ and ‘test_comparisondata.’ The
typical table prefix must also be used. In case the tables are dropped, they may be recreated via
the command for Test App under the ‘Update System Tables’ tab.

