

Task GPS

By Matthew Miller and Landon Irwin

On behalf of the Nickoloff Faculty Cohort

18 June 2019

Introduction

The Nickoloff Faculty Cohort is a team of faculty at the Colorado School of Mines. The cohort
operates under the Thomas R. Nickoloff Entrepreneurship and Innovation Fellowship Program.
They aim to incorporate an entrepreneurial mindset into their teaching and research. Currently,
they are working to develop tools to help students manage their time to increase productivity
and reduce stress.

The cohort is designing a mobile and web-based application to improve time management for
tasks called “Task GPS”. Task GPS should allow users to easily create and manage tasks with
deadlines. Time is allocated for the user to complete these tasks in a reasonable time-frame.
The user receives suggestions from the application on how much time tasks will take and when
to complete them. The application receives feedback in the form of actual time use and adjusts
accordingly. Task GPS is a personalized time management application designed for everyday
use on the go.

Based on the vision for Task GPS, we focused on highlighting the minimal user interaction,
personalization, and data science in the design of the application through the duration of this
field session. In order to import, create, modify, and track tasks, there should be as much
redundancy and defaults as possible to minimize user interaction. There should be adequate
settings in order to provide personalization. Additionally, a major component that the Nickoloff
faculty cohort wants to establish for Task GPS is a machine learning model that predicts
properties of tasks based on individual user interactions with the application. Concise
visualizations about task progress should also be provided to the user. The app should
schedule sessions of work time for the user based on the machine learning and settings to help
reduce procrastination. Finally, the application should run on most mobile devices and
synchronize data between devices to maximize user outreach.

Requirements
The following set of requirements provide specific details about the overall components and
specify features that needed to be implemented for Task GPS to be considered done.
Additionally, there were constraints that we followed during the development of Task GPS that
are detailed in these requirements. We categorized the requirements based on the principle
goals for the application so that we could plan out sprints for our Agile process more easily.

Functional
This section of requirements details the features of Task GPS that should have been
implemented. It contains only what should have been implemented and not how it was
implemented.

1

● Management - It should be simple and quick to manage tasks and events within the
application. Additionally, managing these tasks and events should allow the user to get
at least all of the experience of a basic to-do list.

○ User must be able to create and modify tasks, which have a name, a due date
and time, and an estimated duration, as well as events, which have a name and
start and end dates and times.

○ There should be an option to import tasks and events from external applications
or services. Namely, the user should be able to import tasks and events from
Canvas and Google Calendar.

● Time Tracking - In order to incorporate time into the application, Task GPS should
provide a way to track progress made on tasks.

○ The application should include a timer that counts progress made on a
user-selected, incomplete task.

○ The timer should support a rounds system where the user works for a specified
number of minutes and then the user breaks for a specified number of minutes.
There should at least be support for rounds of 25 work minutes/5 break minutes
and 52 work minutes/17 break minutes.

○ The user should be rewarded for spending time on tasks and using the
application efficiently.

● Scheduling - To best reduce procrastination, the application should provide suggestions

of when to work and what to work on.

○ For each task, the schedule should have allocated at least the amount of time
that the user estimates the task will take.

○ Each day should have approximately the same amount of free time so that the
user does not get bogged down with too many tasks.

○ There should not be periods of work in the schedule that are less than a certain
threshold minimum work duration.

○ Working sessions should never be scheduled on top of an event timespan.
○ The user should be notified every time that one of the scheduled working

sessions starts.

● Visualizations - There should be useful visualizations that summarize the progress on
all tasks as well as visualizations that summarize progress on individual tasks. These
visualizations should be concise and highlight user performance.

○ There should be a visualization that is a stacked line chart that shows the amount
of time left on each task per day. Thus, the top line in this visualization describes
how much time is left on all tasks.

○ There should be a visualization that is a stacked line chart that shows the amount
of progress made on each task per day. Thus, the top line in this visualization
describes how much time was spent on all tasks combined per day.

○ There should be a visualization that shows the percentage of a task is completed
between the dates the user started on the task and when the task is due. There

2

should be a line on this chart that represents now so the user knows if they are
behind schedule or not.

● Data Synchronization - The application should be as portable as possible meaning that
if users have entered data before, they should never have to re-enter that data. This
requires the user of data synchronization between devices.

○ Each user should be presented with an option to create an account for Task GPS
with an email and a password.

○ Signed in users should have their tasks and events stored on a database that is
always accessible and provides automatic data synchronization.

○ Users should be able to use the device without signing up for an account with
some features limited.

● Machine Learning - Machine learning should be used to predict properties of the tasks
that the user creates. For now, the machine learning should take the task name and the
estimated time of a task and predict the actual amount of time that the task will take.

○ There should be a pre-trained version of this machine learning model that is
hosted online that user devices will download when needed.

○ Each user device will re-train the machine learning model that is stored online in
order to create a personalized version that is more accurate.

Non-Functional
This section of requirements details the constraints of Task GPS during development. These
are either client-imposed or resource-imposed constraints. The constraints are either general
requirements for the application or restrictions on our development process.

● Interface - The overall user interface and experience for the application is important
since first-time users will only give Task GPS one chance to impress them.

○ The user interface should be easy to use and intuitive. It should be stylish and
designed logically. Basic localization should be implemented such as icons for
buttons and simple translations.

○ The application never stalls or delays the user tremendously. This applies
particularly to machine learning parts of the application.

○ There should be settings to customize the user’s experience that apply broadly to
all users.

● Development - During development, we had a few restrictions in order to make sure
that existing progress on the application did not go to waste and that future work on the
application is easy.

○ The application should be developed using JavaScript on the Cordova mobile
application framework. Cordova is a cross-platform framework so it is necessary
for the deployment to multiple mobile device brands.

3

○ We use GitLab, which is similar to GitHub, in order to make the repository we are
working on private, share code between team members and the client, and to
track features and bugs that need to be implemented or fixed respectively.

○ The code that we create during field session should be easily extensible since
there are many planned features to implement once we have stopped working on
the project.

● Deployment - The application is planned to be released after the field session is over so
there are a few deployment steps that we need to take to ensure a successful release.

○ The application will be deployed on the Apple App Store, Google Play Store, and
online as a website. All prerequisite information to deploy to these platforms must
be obtained.

○ The application must have enough of the required features to be useable in a
course on time management by the following fall semester.

System Architecture
The Task GPS project is a full-stack development project since it incorporates both back-end
resources—machine learning, a database, and a web server—and front-end resources—the
user interface, notifications, and application assets. A full-stack project such as ours requires an
elaborate system architecture. We describe the macro-scale view of our project design in the
following section.

4

Figure 1 - User Cycle

In Task GPS, the user is presented with numerous ways to interact with the application that
produces responses later on. In ​Figure 1​, the actions that a user can perform are visualized.

The user only interacts with tasks and events. These objects can be directly added, removed, or
modified by the user or can be imported from other services such as Calendar apps. The timer
is used to keep track of the progress of tasks. With it, the user modifies tasks indirectly. Both
tasks and events are taken into consideration when making a work-time schedule.

The schedule is used to provide useful information to the user on the dashboard. Finally, the
user is notified of work sessions in the schedule as they pass via local notifications in the
device’s notification center. Some other components of the application such as machine
learning or data synchronization work in parallel to these operations. They are not included in
Figure 1 ​because they are not visible to the user.

5

Figure 2 - Database Synchronization

The users of the Task GPS app fall into two categories. Most users will be mobile users with the
Task GPS app downloaded onto their phones. Other users may use a desktop instead and
access the web hosted version of the application. The data flow between user devices and the
Task GPS components is demonstrated in ​Figure 2​.

We host our application back-end components on a Google Firebase server. This was the
simplest and most reliable way of distributing services for Task GPS. Contained on the Firebase
server is a hosted machine learning model. This is used as a starting point for personalized
machine learning models. Then, the database on the server synchronizes information between
devices as long as they are logged in to the same account. Both mobile and desktop devices
access the database and machine learning model. Finally, a web server is hosted for
non-mobile users.

Users on both types of platforms should have the same type of experience even if data is
distributed differently. We achieve this easily since we are using JavaScript to develop the
mobile application which means it can easily be deployed as a web page. However, we do lose
some functionality such as notifications and service integration on the web version. Otherwise,
both types of users have the same experience.

6

Figure 3 - Application Wireframes

There are five main application pages that the user will be able to use in Task GPS. The pages
are shown in ​Figure 3​. The pages will be accessible via a navigation bar at the bottom of the
application. First, there is the dashboard which will display the visualizations described
previously. Next, there is an add and manage page that allows users to add, import, and edit
tasks and events. There is a timer page which presents a timer with the features described
earlier. Finally, there is a settings page which will allow the user to customize options such as
the theme, scheduling parameters, and their involvement in the machine learning improvement
program.

7

Besides these pages, there are additional sign-up, log-in, and privacy policy pages. The sign-up
and log-in pages are self-explanatory. The privacy policy page describes the privacy policy
which must be agreed to in order to sign-up for an account.

Technical Design
The Task GPS project contains many intricate components to function. Many of these parts
required lots of research and brainstorming in order to produce a design that works. Primarily,
back-end components of the project such as the machine learning or database required the
most details. We describe a micro-scale technical design overview of these components in the
following section.

Figure 4 - Firebase Interactions

As stated previously, we decided to use Google’s Firebase service. The service provides many
features to help deploy applications on Android, Apple, and web browser. Thus, this service was
exactly what was needed for our project. Specifically, we used the Firebase Authentication,
Firestore, and Hosting services as shown in ​Figure 4​.

8

First, since we are using JavaScript and Cordova is a web-based framework, we decided to use
the web-based Firebase libraries for Task GPS. We needed a way to implement a user sign-in
and log-in system that was secure and interacted with the database. Next, we needed a
database itself that was able to store each user’s data in a separate and secure collection.
Firebase allows us to have a web page hosted for users that are not using mobile devices as a
fallback mechanism. Finally, we needed to host the entire application in the cloud so that all
devices can access the machine learning model, database, and web page.

The web hosting for Firebase is relatively simple to work with. The entirety of the Cordova
project is essentially a web page with multiple HTML, JavaScript, and CSS files. Cordova takes
these files and converts them into a format that can run on mobile devices. Since the project
was set up like this, we could simply export the files to the Firebase web hosting service and
deploy the application. As mentioned previously, this results in the downside of not being able to
use notifications and calendar services like in the mobile version of the application.

The authentication from Firebase allows us to create user accounts. In the Firebase
configuration, there are multiple ways to allow user sign-up and log-in. The most convenient
way for us is to allow the user to simply enter an email address and a password to create a new
account or access an existing one. Associated with this account is a unique identifier. This
identifier is considered public and is okay to transmit freely online. The email and password
information is sensitive information, so we have to use Google’s cryptography module ‘scrpyt’. In
return for the user information, the Firebase authentication server sends back a key that can be
used for other services.

The key for the authentication is used to set up a directory for each user in the Firestore
database. The Firestore database design deviates from traditional relational databases. In
Firestore, there are a series of collections which contain at least one document. Each document
can reference more collections. Thus, we designed the following data structure in order to
contain our information. There is a collection of users with corresponding user documents. Each
user document points to collections of tasks, events, and work sessions. The information
associated with each of these objects is detailed below.

9

Figure 5 - Machine Learning Process

In order to extract useful information from the tasks that users create, we will be using machine
learning. Since we are provided with very little information from the user, we must create rather
complex algorithms to predict useful information. Currently, we are attempting to predict the
amount of time that a task will take given its name and estimate duration. A demonstration of
how this machine learning will take place is given in ​Figure 5​. We hypothesize that there is
some correlation between the name of a task and the amount of time it will take.

The input to our machine learning model is a task name and the output is the estimated duration
of that task. First, the task name is converted into a phrase embedding by the open-source
Universal Sentence Encoder Lite ​model. The phrase embedding is simply a numerical
representation of the task name. The phrase embedding is then passed into a neural network in
order to predict the task duration.

The neural network is initially stored on the Firebase server. This is a model that has been
trained on data from all agreeing users. Then, the neural network is transferred to the client
device to be reinforced on individual task data. As the user uses the app, they generate
information about the actual time required to complete a task which is used to perform
reinforcement training on the neural network.

10

The machine learning is all performed using Tensorflow.js which is version of Tensorflow which
is more portable and can run on JavaScript. The Universal Sentence Encoder is retrieved from
its source whenever the application is loaded and the user is entering information. The time
prediction neural network is hosted on the Firebase server as a TensorFlow lite file. The model
is downloaded to the client when necessary and then stored in the Firebase database when
personalized.

Figure 6 - Database Entity-Relationship Diagram

The task and event data that users generate must be in a consistent format that can be stored
on the Firebase database. Luckily, the Firebase database is very lenient in how it stores data so
data types and data capacity were not a concern. However, we still needed consistency so that
the application does not fail when retrieving data. Thus, we used the model given in ​Figure ​6 to
store data.

In our model, there is a user entity which represents a single account with an email and
password pair which has multiple tasks and multiple events. Every user has a machine learning
model which is composed of a neural network and a timestamp determining when the model

11

was trained last. The timestamp is used to determine when to retrain the model. Each task and
each event has the information required to describe its name, dates and times, and additional
metadata about the task or event.

Quality Assurance
There are many components of the Task GPS project that needed to have high quality in order
for the application to be successful. This is different than the implementing features that we
discussed in the requirements section. For instance, the application may implement machine
learning but the predictions may be so terrible that it causes more harm than good. For this
reason, we have developed a quality assurance plan for Task GPS. We first introduce the
following key quality aspects and concerns that must be resolved before being the Task GPS
project is considered complete.

● Machine Learning - As per the example, the machine learning model must be accurate
enough that its prediction for actual time spent is better than the user estimate. In
addition, the model should be optimized to be computationally efficient. If the application
stalls when machine learning tasks place, nobody will want the machine learning feature.
Finally, the machine learning model should be easily modifiable since it is currently
experimental and will likely experience many changes.

● User Interface - The user interface must be functional and appealing. No user should

have difficulty looking at the application. Additionally, every part of the application should
be styled consistently. Further, if the user interface does not promote useability, then it is
too complicated and should be simplified. Finally, the settings for the application should
contain styling options such that every user is satisfied with the look and feel of the
application.

● Data Synchronization - As previously noted, the application uses Google Firebase to
store and synchronize data. Since we are using an external service to provide data
storage capabilities, we need to make sure we are completely familiar with how secure
the service is. We need to make sure that user data cannot be leaked and that a user’s
identity cannot be deduced solely by the information they provide. Additionally, we need
to make sure that each user is aware of the usage of their data.

● Source Code - This project will continue to be developed thoroughly after we have
finished this field session. Thus, future developers need to be guaranteed that the code
that we produce is easily maintainable and extensible. Further, the codebase needs to
follow good software engineering principles.

Plan
In order to make sure that the qualities above are ensured, we have devised the following
quality assurance plan. This plan details actions we have taken in order to meet our quality
goals stated in the previous section.

12

● Code Reviews ​- Each member of the team reviewed major components of the code that
we create on a regular basis. Additionally, a software engineer in the client group helped
review the code.

○ This makes sure that code is understandable to everybody that is part of
development or may be part of future development. The interfaces and modules
in the code should make sense.

○ The codebase will be architectured well enough that any common programming
task on the application should only take a few lines of code by using
well-researched modules and services and actively refactoring code to follow the
SOLID software engineering principles.

● Unit Testing ​- We tested the basic functionality of key components of the application by

writing unit tests for primarily used modules. We performed the unit testing by using the
QUnit JavaScript testing library. Both members of this team and a software engineer in
the Nickoloff Cohort wrote unit tests. This helps guarantee that the modules work
correctly under all conditions for future developers. We implemented QUnit tests such
that it will be easy to add them to our GitLab continuous integration. This ensures that no
code will be committed if it is faulty. The following modules were tested with the specified
tests.

○ Schedule ​- The scheduling module provides utilities to create a schedule given
specified tasks and events and scheduling parameters such as wake time and
sleep time.

■ The amount of time allocated for each task should be at least equal to the
remaining time for that task and should be no greater than twice the
remaining time for the task

■ Task sessions should be spaced across days such that the free time on
each day between task due dates is approximately equal. The margin for
error on this equality is the minimum session duration.

■ Task sessions should always be at least as long as the minimum session
duration.

■ Task sessions should never be planned in a way that they intersect with
existing events at the time of scheduling.

■ Task sessions should not be planned before the user-specified wake time
or after the user-specified sleep time.

■ Repeating tasks and events should be accounted for when scheduling
such that the schedule acts as though multiple individual tasks and events
are planned.

■ Events that span over multiple days should act identically to multiple
events over single days.

○ Storage - The storage module allows data to be stored locally on devices as well

as in the cloud database easily.

■ Data passed to the storage module should be stored on the user device
between multiple sessions of opening and closing the application.

13

■ Data stored in a JSON format should be correctly stored and retrieved
such that none of the original data is lost or corrupted.

■ Data should be stored locally when user not logged in and should be
stored online when user logged in. Data should be transferred upon
logging in.

● User Interface Testing - We made sure that the user interface works according to

design and that using the user interface produces no bugs or unintended effects.
Additionally, we manually tested that each feature within the application is accessible in
an intuitive way in a small number of actions.

○ We tested that user is made abundantly clear about the usage of their data in the
application by making sure that every pop-up and notification appears correctly
when appropriate. Specifically, the user should be notified:

■ When they are signing up about the terms of data usage by the app.
■ When the user has added a task, event, or recorded a session that is

transferred to the database about not releasing any sensitive data and the
use of the data.

○ We ensured everything in the app in accessible in ten clicks or less without
confusion by following instructions in user cases. Specifically,

■ The user should be able to find any task or event in less than ten clicks.
■ The user should be able to start timing a task in less than ten clicks.
■ When a notification to start working is sent to the user, the user should be

able to start timing a task in less than ten clicks.
■ Any setting should be able to be changed in less than ten clicks.
■ Information about how much progress is made on tasks during the week

should be able to be accessed in less than ten clicks.

○ We showed that the user interface promotes recurring user population by making
sure that the UI follows the material design principles as specified in the Material
Design Guidelines and by using Material Design Components for the Web.

● User Acceptance Testing - It is most important to the future success of the application
to make sure that potential users of the application are willing to keep using the
application. We will present the application to multiple potential users before deployment
and observe how they interact with the application.

○ This will help make certain that everything the user would like to know and every
originally intended feature is available in the application by having client use the
app and confirm that every feature is implemented. Specifically, the following
should be available and working:

■ Dashboard and visualizations of task progress
■ Adding a task or event
■ Modifying a task or event

14

■ Timing a task
■ Being notified of a task
■ Machine learning for task duration prediction
■ Data synchronization
■ Settings and customization

○ We will guarantee customization settings work for all users by handing the

application off to multiple users and making sure that the user can customize the
settings enough for the app to always work as the user intends.

○ The application will be deployed and deployment of the application will be tested
by making sure that application is downloadable correctly by multiple people from
the Google Play Store.

● Mockup Server Attacks - The user is submitted their information to an external service.

Thus, we must make sure that the data that the user submits is secure and that the user
is aware of the usage of their data. We will execute a series of tests attempting to access
the database in unintentional ways.

○ This will protect against future security threats by making sure that they cannot
cause damage to the current system by using a well-tested system such as
Google Firebase.

○ We will ensure no useful confidential user information can be leaked from the
system by restricting permissions of the user and performing mock break-ins to
test security. We will do this specifically by using Google Firebase’s security
simulator to:

■ Make sure users that aren’t signed in can’t access the database.
■ Users can’t access other users’ information in the database.

Results
For the Task GPS project, we were able to implement most of the initially required functionality
and even implement some stretch goals such as adding themes to the user interface and
allowing customization of the scheduler through the settings menu. We have designed what we
hope to be a successful product for the Nickoloff Faculty Cohort. Concluding this field session,
we reflect on the accomplishments that we have made and the work that we have done,

Unable to Complete
Unfortunately, there were some features and goals that we were unable to achieve. Either there
was a lack of sufficient development time to actually implement a feature or we had insufficient
resources to accomplish what we planned. The following section is a summary of the features
we were unable to complete.

● We could not host a server version of the machine learning model which trains on all
user data and a client version of the model which is only trained on individual user data.

15

● We did not have the resources to implement localization for different languages and
locations.

● Service integration with Canvas for importing tasks and events was infeasible due to
requiring some amount of administrative status on the service.

● Gamification of completing tasks such as rewarding experience and prizes could not be
completed in the given time frame but will be recommended to the client.

Quality Assurance Results
We were able to execute all parts of the quality assurance plan to some degree. Most of the
results were satisfactory and provided good insight on the project. The following is a summary
of the results that we found while executing our quality assurance plan.

● The code reviews were successful. We were able to refactor code into highly extensible
units that follow the SOLID principles.

● The tests for the scheduling and storage modules are passing. Some of the schedule
tests alerted us of some bugs with the even distribution of tasks. We were not able to
implement the continuous integration for GitLab.

● The user interface and app has been demonstrated twice a week to the client and to a
few other potential users of the app. They have approved the user interface design and
app functionality. Many possible origins of bugs in the user interface have been
investigated and resolved.

● The ten clicks or less test on the app revealed the following results. These results
correctly reflect that what we are prioritizing in the application is available in the least
number of clicks (such as progress and timing).

○ The user can find any task within at most 5 clicks if not signed in and 2 clicks if
already signed in.

○ The user can start timing a task within at most 9 clicks if not signed in, at most 6
clicks if signed in, and 4 in the common case.

○ The user can start timing a task from a notification in at most 3 clicks.
○ All settings are able to be changed in at most 3 clicks.
○ Progress information is available in at most 3 clicks if not signed in and at most 1

click if already signed in.
● The machine learning was not implemented completely but the architecture is available

for our client to extend. Data still needs to be collected in order to train the models that
we have researched and designed. The current model does not cause the application to
stall since it is running on a background thread that is hardware accelerated.

● The database has been tested against malicious requests in the Google Firebase
simulator. None of the attempts to add, modify, or delete other users’ data or central data
were successful.

● The application has been successfully deployed to the Google Play Store and Apple App
Store under the name “Task GPS”, and to the web hosting server.

16

Extensions
We have come up with multiple additional features that the client might consider implementing
in the future. The following are recommendations for the client to extend the application to be
more successful.

● The machine learning in the application should be extended from only predicting the
amount of time that a task will take to predicting what amount of time the user spends
taking breaks, when and where the user is most productive, and how important tasks
are.

● Adding gamification to the app in order to add rewards for using the app to track tasks
and to not procrastinate. A leaderboard should be available for users and users should
be able to join groups or organizations such as a particular class at the Colorado School
of Mines in order to compare how they are doing on a particular task compared to
others.

● Add subtasks and goals to the current task structure so that users can better organize
tasks and the scheduler can better plan out specific sessions for a task.

● Add more synchronization between devices such as synchronizing when the timer is
running, synchronizing settings, or synchronizing the screen where the user left off.

Lessons Learned
Throughout the duration of this project, we encountered many issues and had to adapt the
trajectory of the project to meet both our client’s and our own needs. The following section
details a few of the lessons we learned in this field session.

Web applications can be nice to develop since the web-based design allows for inherent
cross-platform capabilities. We were originally hesitant to use a web-based framework over
traditional binary applications but we learned that there are a lot of benefits to going web-based.
Many common libraries and visual frameworks already exist and are easy to include.
Modifications to the app affect all platforms very similarly.

Actually deploying an application is a very complicated process separate from developing the
application. Our application, although compatible with all types of devices, follows entirely
different processes for deploying onto those devices. The Google Play Store is relatively easy to
deploy to with a low initial cost while the iOS store has more restrictions and guidelines along
with a steeper annual fee.

Setting up new services or integrating existing services is always nontrivial. Although there may
be some great service out there that does exactly what is needed for a project, actually using
the service in a project is difficult.

● We wanted to set up a web server quickly based on an existing web framework for
Python called Django. However, there were complications with getting a server hosted
on campus that broke our time constraints.

17

● We wanted to integrate with the Canvas service which was initially thought to be a
simple API call. It turned out that it was impossible for us to set up the integration
because the process required access to a Canvas administration account and a key that
couldn’t be deployed in our application due to security issues.

Having the right setup for development is important. We spent approximately an entire week
attempting to set up development environments that suited our needs. Additionally, not having
the ability to set up computers on campus without tech support was detrimental because it
made us have to wait longer. Problem after problem arose with various conflicting softwares and
packages and eventually was resolved by some crafty tricks.

With the client involved during the entire development process, we developed a higher quality
vision than would ever be possible if we were just given a list of expectations. We were able to
easily bounce ideas for the project back and forth to the client and refine and modify the end
result to adapt to what is feasible.

This project was essentially the first full-stack experience that we have had and it required lots
of time spent to learn new technologies. We had to work on all parts of the application from
database management to app functionality to the user interface to the deployment. All of the
different parts required vastly different knowledge bases. A lot of research was involved in the
project and how to implement each part of the stack.

Concluding Remarks
We think that this field session was a complete success for us and the Nickoloff Faculty Cohort.
Not only did we develop a successful application, but, we also learned lots about the software
engineering process from architecture to deployment. We used the Agile development process
which helps make projects like the Task GPS release successfully. Finally, we got to experience
a realistic software development setting to experiment in before developing in industry. This field
session will help us greatly in our future careers.

18

