

SpikeBanner
By: Tom Parry, Will Denne, and Jared Parrish

Client: Enrique Cubillo
6/19/2018

Table of Contents

Introduction 2

Requirements 2

Public App Architecture 3

Private App Architecture 5

Data Flow 6

Database 6

Technical Design 7

Decisions 7

Results 9

Appendix 11

1

Introduction
Enrique Cubillo is the inventor of a new mode of urban transportation and new endurance sport

called SpikeBoarding​™ ​as seen below in Figure 1​. He has big dreams to see SpikeBoarding become the
next big racing sport and to see the rise of SpikeBoarding in an urban environment. He came to Mines
with a project to create two apps and a website to track and promote non-profits as well as
SpikeBoarding in general. For the non-profit organizations, Enrique uses banners that he can connect to
the back of his SpikeBoard to advertise for their causes. He calls this enterprise SpikeBanner​™​. The goal
for us was to create one private app that could be used by Enrique and the rest of his team to track
themselves as they use their SpikeBanners to promote the different non-profits. From there a public
Android application and website was created to retrieve and show data that has been collected by the
private app. If a member of the SpikeBanner team is currently tracking themselves, the users will be able
to track each team member live and see which banner they are currently SpikeBoarding with on the
public app. On the website, Mr. Cubillo wanted an elegant display of data for each of his sponsors as
well as an easy way to add and remove the non-profits. Finally, all applications that write to the
database must be secure so that no one can change the data without being a member of the
SpikeBanner team. With the new SpikeBanner applications, the SpikeBoarding and SpikeBanner team
will have an easy way for people to follow along with their journey and watch SpikeBoarding rise to
fame.

Figure 1: Picture of Dan Bowen Spikeboarding around New York. Photo taken by Enrique Cubillo

Requirements
High Level Vision of the Product

The SpikeBanner project is made up of three different components: a public website, a public
Android application, and a private Android application. Each component has a different role and needed
to be completed by June 18th, 2018. The website has two main subcomponents. The first is a basic table
that displays the distance and elevation accumulated under each sponsor’s banner. It looks nice and fits
in with the client’s other websites. The other subcomponent is an administrative page so the client can
add or remove sponsors as they come and go. Next is the public Android application. Like the website, it
is aimed at the public and displays the data that was collected under the sponsor’s banner. Finally, the
private Android application collects the elevation and distance data from the athlete (similar to Strava or

2

Sno Cru). It will have a limited release and only be available to selected SpikeBanner athletes. It saves
the data collected to a database for use by the public applications.

Functional Requirements

The website displays the data collected by the private application. Each sponsor has picture to
be displayed in the table of data. Additionally, a login page is available, and upon logging in the
authorized user can add or remove organizations from the database. The public Android application
must be similar to the website. Each sponsor is selectable from the main screen. The next screen will
display the data that was collected and entered into the database, along with a picture or two of the
banner. The public application was deployed to Google Play Store on Friday, June 15. Finally, the private
app must track the user’s location and other relevant data points. A basic login screen determines which
athlete is using the app and which banner they are riding on. The app then collects data using a
foreground service and uploads the data to the database when the athlete is finished.

Non-Functional Requirements

Both the public app and website must be elegant and simple to operate. While the private app
does not need to look good, it still is easy to operate and understand. The client is the administrator on
all accounts to make sure they can change the application in the future. The website also works with the
client’s current website infrastructure. The applications uses affordable and easy to manage third party
libraries and software.

Nice to Haves

The client’s minimum requirements are listed above, but he did have a variety of other optional
requests. On the public app and website, each individual trip could be selected, leading to a screen
displaying the data being and a map of the trip. Another request was to implement live tracking of the
athletes using the private app. There is also a lot of possible expansion on the administration end. While
adding, removing, editing organizations and users is possible through the Firebase console, it is not easy
to do so for someone who is unfamiliar with Firebase. (Note, the Firebase database and why we choose
it will be explained later in this document.) We could have made it easy for the SpikeBanner team to do
all this on the website without having to figure out how Firebase works. We had only enough time to
implement the live-tracking feature and administrative features for the website.

System Architecture

Public Application
The top left image in Figure 2 shows the home screen for the public Android application. It shows the list
of companies, which are all clickable buttons. Upon selecting an organization, the user is directed to the
screen on the right, which displays all distance, elevation, and time data collected under the
corresponding banner. Pressing the back button takes the user back to the home screen. If a
SpikeBoarder is actively riding, a notification bar appears at the bottom of the screen. Upon clicking this
notification, the user is directed to the lower screen in the diagram. This is a map, with all current
SpikeBoarders’ locations marked on it with the SpikeBanner logo. The user can tap each of these
markers to see which rider it indicates and which organization they represent.

3

Figure 2: Public Application Storyboard

4

Private Application
The home screen of the private Android application, shown in Figure 3, requires the user to log in. It has
text entry fields for email, password, name, and organization they are representing. When an email and
password are submitted that are recognized by the database, the user is directed to the data collection
screen, shown on the right. The three buttons across the top allow the user to start data collection,
pause collection, and stop and store the data. Below the buttons, the user is shown their elevation,
distance, time, and organization for the current ride. When the stop button is pressed, these values are
saved to the database.

Figure 3: Private Application Storyboard

5

Data Flow
Our database is a NoSQL database hosted by Firebase. As seen in Figure 4, all parts of our project
communicate with and rely on the database. All communications are in the form of JSON objects. The
private application receives data from the database so that it knows what organizations can be
represented, and sends data to record distance, elevation, and time. The public application does not
send data to the database, but receives composite distance, elevation, and time for each organization.
The website receives the same data as the public application, but it can also send data by adding or
removing sponsors. Anyone can view the website or download the public app, which is currently
available on the Google Play Store. However, the private app has not been published and is only for use
by SpikeBoarders.

Figure 4: Data Flow diagram

Database
This entity-relationship diagram shows (figure 5) how data is correlated in the database. Any number of
riders can be riding for 1 organization at a time, and each rider has fields to store their name, current
organization, current latitude and longitude, and whether they are active for live tracking. Each
organization is composed of fields to hold their name, logo URL, and the total distance, elevation, and
time accumulated by riders displaying the sponsor’s banner.

6

Figure 5:Database Entity-Relationship Diagram

Technical Design
Database

All applications share the same database with each other. Each application reads from the
database in some way, and the private Android application and website also write to the database.

This Firebase database is a NoSQL database. Therefore all data is stored as a JSON document, as
opposed to tables such as in SQL databases. JSON objects can be thought of as nested dictionaries,
where each ‘key’ has a corresponding ‘value’ that can be either a single value or another JSON object.
While the database is set up similar to that of a SQL database, it is slightly different in its design and how
you read and write data. In the SpikeBanner applications the Organization and Rider sections act as
tables. They each have different tuples with different attributes. The Organization table keeps track of
each organization’s stats over the lifetime of the partnership. The Rider table keeps track of location,
name, and whether the rider is active for the live-tracking aspect of the app.

Location API

Another interesting aspect of our project was getting the location objects to track location
change. We chose to use Google’s FusedLocationProvider API to collect and track our location. We chose
this API because it was easy to implement and use and there was a lot of information on how to use it
online. Using this API we were able to get the last known location of our phone and we were able to
request location updates at an interval that we set.

Decisions
Application Deployment Operating System
We were given the option to develop the public application for either just Android or both Android and
iOS. While there are a few options to write and develop code for both operating systems and app stores,
we elected to develop only for the Android OS and Google Play Store. This decision was made mostly to
keep costs down. The cost to publish an application for Android is $25, while Apple costs close to $99.
This does not include obtaining MacOS computers to work on the iOS app. Cross-Platform tools were

7

also considered, but we would still need to pay $99 for the Apple App Store and most cross-platform
tools are expensive or have limited free functionality.

Development Environments
Two members of our team were already familiar with Android Studio to use as our Android IDE. Android
Studio is the official IDE for Android development, is free and easy to use, and is easy to test and deploy
both on physical and emulated devices. Due to our previous experience, this was an easy choice. One
team member had some experience designing websites using the Atom IDE. Atom is an open source text
editor made by GitHub. It allows the developer to view a preview of the website without having to open
a browser, so this feature combined with one team member’s previous experience led us to choose this
IDE for the web development portion of our project.

Location Service
A key component of the private application is tracking the distance, elevation, and path taken by each
rider participating in SpikeBanner. There are many code bases and services that allow apps to track the
phone’s location, but our options were already decreased due to the fact that we chose to make an
Android app. Our team researched the best options to retrieve device location based off what was most
commonly used, and we eventually narrowed our choices down to the android.location library or the
Google Location Services API. The android.location library is considered deprecated, so this decision was
simple. Using the Google Location Services API allows our application to easily retrieve the location of
the device at a set interval. For getting elevation we first looked into also using the Google Location
Services API but found that over time, the inaccuracy from android.location is negligible. The location
services API would have been more accurate, but also could have cost our client more in the long run.

8

Database Host
We decided to use Firebase as our online database of choice. We made a table to show our decision
making process:

Database Cost per GB stored Database Type Easy to implement? Other Comments

Firebase Free under 1,
$.026/GB after

NoSQL The easiest Used by a lot of others,
made by Google

Amazon
WS

$.115/GB PostgreSQL (or
other SQL-type)

Kinda AWS is an industry standard

Azure Free under 2,
$​0.085/Gb after

SQL Yes Made by Microsoft

Bluemix Free under 1, $1/GB
after

NoSQL Yes Not really made for
beginners

Firebase was the cheapest and easiest to use out of the ones we considered. There is a lot of
documentation about using Firebase for both Android and web applications. NoSQL can be easier to
work with than SQL especially in small, basic databases like the project’s. Firebase also can be used for
iOS devices if our client decides to have an iOS application made.

Code Sharing
Being able to share code amongst the team is obviously important, and we had several options. Github,
Bitbucket, and SourceForge are three of the most popular sites that host code for developers, and they
are all free to use. Thus, the main factor our team took into account was familiarity. All team members
have completed the Software Engineering course offered by Mines, and this course contains a segment
using Github. Therefore, all three of us were familiar with this service and had all of the necessary
components (such as the Github command line, Git Bash) and knowledge to easily incorporate Github
into our project.

Results
Our goals were to create a private Android application which would track the user’s location,

another Android app and a website which displayed statistics gathered from the private app. We were
able to implement all requested features and a few small extras. This including an organization manager
for the client, pictures of the banners on the app, and a few others.

Testing

For the private application, there are only two identical devices that need to run it, so
compatibility testing was not necessary. We have conducted basic data collections tests with the private
app which have yielded good results. These included short distance tests around campus and extended
driving tests in the mountains. For the public Android application, we have tested a variety of emulators,
Android versions, and device screens. As of yet, we have not experienced any issues with device
compatibility. We still need to test on more devices, especially those with larger or smaller screens and
devices which run older versions of Android. For the website, we’ve tested on Chrome, Firefox, and
Edge. We’ve also tested on Chrome for Android and Safari for iPhone. The website appearance and

9

function is satisfactory for all browsers we have tested so far. We tested the private application by
driving to Windy Saddle with the app open. The distance and elevation data returned were fairly
accurate, and we believe any inaccuracy can be explained by the fact we were driving in a car and not on
a SpikeBoard. We also tested the private app with Mr. Cubillo himself on a SpikeBoard, and discovered
one issue. After approximately 5 minutes, the operating system on the phone stops our location tracking
service. We solved this by making it a foreground service, which causes the operating system to
recognize that even though the app is not open, the user still wants it to run.

For the Future

There are many possible extensions for the SpikeBanner app. One possible extension that we
did not have time to look into is mapping the route that is tracked and displaying that route to the user
of the private app and possibly store routes to the public app so users can look at different routes where
data was collected from. Another extension could be for the live tracking map to mark each rider with
the logo of the sponsor they are currently representing rather than the SpikeBanner logo.

Lessons Learned

● We learned how to research and implement Google and Android location APIs.
● We learned about how some functions can cause memory to leak and we had to problem solve

to work around these functions to avoid taking up too much memory.
● We learned how to work with databases stored in the cloud.
● We learned client relations and how to work with a client who has no computer science

background.
● We learned how to implement third-party authorization functions in both a website and mobile

application context.
● We learned about how the operating system saves memory, and how this affects services in the

background and in the foreground.

Appendices
Below is a user manual that will be given to Enrique so that he can understand and use the app

to the best of his ability. Below we describe how each application and website works and explain how
each is supposed to be used.

Section 1: The Private App

The private application starts with a login screen where it will accept a username in the form of
an email and a password to login the user. Also on this screen you will be able to choose what banner
you would like to select. From here the app will log you in if the username and password are correct. On
the next screen the you will see three buttons across the top. The play button will start a tracking route.
The pause button pauses a route in process until the play button is pressed again to resume the route.
The stop button will stop the route entirely and send data to the database. After the stop button is
pressed the next time you press play an entirely new route will begin. Below the buttons are displays of
the data of the route. You will see the elevation in feet, the distance in miles, the time, and the company
name of the organization you are representing for the route.

10

Section 2: The Public App

The public application’s first screen takes names and logos from the database. You tap an
organization to look at its stats. You also get a picture of the banner. If someone is actively
SpikeBannering, a button will appear allowing you to track their location on google maps. There is not
much you need to do with this. Just keep everything in good standing.

Section 3: The Website

The initial page is spikebanner.com/app, and the login page is {Removed}. The only way to
access the login page is with a direct link. This is for security reasons. Login with your Firebase
credentials to add or remove charities.

Adding Charities: After selecting “Enter a new Organization”, Enter the name, logo, and banner
picture for the organization. The logo picture must already be hosted another website. It must be a
direct link to the picture! The URL must end in .png, .jpg, etc. Same goes for the banner picture. For the
best results, use a 100 x 100 sized image for the logo and a 1000 x 563 sized banner picture. The banner
picture can be a differently sized, but a 16:9 or similar aspect ratio with a similar size will work the best.
If you have already SpikeBoarded with a banner, just click on the check for each piece of data you want
to enter. This is optional.

Removing Charities: This is straightforward, just select an organization and click “remove
selected”. This cannot be undone, but it is easy to add it again if you remember the numbers.

Section 4: Firebase

This is the URL for managing Firebase: ​https://console.firebase.google.com/​ Here you can
add/remove SpikeBoarders, change data, check analytics, etc. I don’t think you’ll ever have to use this
section. We tried to make it so you didn’t have to. But things change, so we want you to be able to
control everything if you need to.

Adding/Removing Users: Click on “Authentication” under Develop on the left side. Click “add
user” to add a user. To remove a user, hover over their user info and click the three dots that appear on
the right. Then click “delete”.

Changing data: You might realize that some data is wrong, or you need to change a picture, logo,
etc. Click on “Database” on the left under Develop. This will show you the active database. Anything you
change here will immediately affect all applications. Click the black plus to view an org’s stats, logos, etc.
Click the x to delete stuff, plus to add, and click on the data to change it. If you delete an individual piece
of data, it will likely break a bunch of stuff.

11

https://console.firebase.google.com/

