A Machine Learning Approach to Topic and Sentiment

Recognition in Customer Service Call Audio
Colorado School of Mines
Department of Computer Science

19 June 2018

Matthew Bussing
Junior, B.S. in Computer Science, CSM
mbussing@mines.edu

Kai Nichols
Senior, B.S. in Computer Science, CSM
nichols1@mines.edu

1 INTRODUCTION

Natural language processing (NLP) is a broad discipline concern-
ing the problems of capturing, analyzing, and interpreting human
language. In particular, NLP can be used to evaluate human speech
in order to determine different qualities about its speaker, context,
and sentiment. These evaluations can be used to inform human-
computer interaction, accessibility, automation, and statistical anal-
ysis of natural language.

This NLP project was proposed by the Edge Intelligence group at

ProKarma, an IT solutions company headquartered in Nebraska of-
fering digital transformation and analytics consultancy. ProKarma’s
Edge Intelligence group is researching ways to improve customer

service by incorporating machine learning to augment customer

service calls in the telecommunications industry. One approach to

improve customer service satisfaction includes determining cus-
tomer attitudes toward particular products and by performing sen-
timent and topic analysis on customer call data, effectively allow-
ing for automated customer service surveys.

Automating customer satisfaction data collection would provide
actionable information about consumer attitudes toward products
and services at much higher response levels than simply relying
on customers staying on the line to finish a phone survey. This au-
tomated system could run parallel to the traditional phone surveys
currently in place at many wireless carriers. Automated sentiment
analysis on products mentioned during the call could be validated
against instances where the customer finished the post-call phone
survey.

Because of the huge number of variables involved in natural lan-
guage, traditional analytic methods would be prohibitively difficult
to adapt to this purpose. Machine learning algorithms allow sim-
ple linear interpolation of audio data as well as powerful pattern
finding tools. For this reason, neural networks were developed for
both topic and sentiment classification. These models find patterns
between product types and consumer attitude which provides the
information required to generate automated customer satisfaction
surveys from customer call audio.

Tyler Doll
Senior, B.S. in Computer Science, CSM
tylerdoll@mines.edu

Sidney Johnson
Senior, B.S. in Computer Science, CSM
sajohnson@mines.edu

2 METHODS

Three models were required to accomplish the ultimate goal of an
automated survey process: speech-to-text transcription, sentiment
modeling, and topic modeling.

— Speech-to-text transcription

In order to automate transcription of call data, a strategy for
automated speech recognition (ASR) was required. An ac-
curate and high-performance implementation of ASR was
crucial in order to perform later topic and sentiment anal-
yses, which take plain-language transcripts as input. Tran-
scripts were preferable to pure audio as inputs for two rea-
sons: firstly, topic modeling cannot be performed directly
on audio, as topics are strings which must be pulled directly
or interpreted from within a text source; secondly, audio
files can be useful in detecting vocalized emotion but can-
not detect unemotional sentiment (such as a monotonous
customer saying “thank you for your help” or a bubbly cus-
tomer happily saying “my phone won’t turn on”).

— Sentiment model
As sentiment analysis is important to determine customer
satisfaction, it was required to develop a machine learning
model to detect sentiment (positive, negative, or neutral)
towards the customer service representative based on tran-
scribed text input. ProKarma’s Edge Intelligence group pre-
viously implemented a bi-directional long short-term mem-
ory recurrent neural network (LSTM RNN) trained using
open-source datasets such as the Interactive Emotional Dyadic
Motion Capture (IEMOCAP) database in order to perform
emotion and sentiment classification on acoustics features
extracted from audio clips. During this project, our transcript-
based model is intended to capture overall sentiment rather
than from vocal features like the previous acoustic-based
model captured.



- Topic Model
To cross-analyze customer sentiment with topics of conver-
sation, classification models were produced to identify con-
cepts and specific subjects in transcripts. Trends in conver-
sational topics can be used to understand both individual
customer attitudes toward products and services as well as
to understand those of the general customer base.

These models culminated in an engine for end-to-end audio analy-
sis of customer call recordings. All project code was written using
Python 3.6, used Google’s TensorFlow machine learning library via
the Keras interface, and used the Python/R Anaconda distribution.
Version control was performed using git and GitHub was used for
hosting all project repositories. The project was developed using an
Agile workflow, and team collaboration and communication was
facilitated using the software, Slack.

3 SYSTEM ARCHITECTURE AND DESIGN

The aim of this project was to prove it is possible to take a customer
service call as input and get data relevant for a customer satisfac-
tion survey as output. The system constructed to accomplish this
task, pictured in figure 1, consists of three main models: a speech-
to-text model, a topic model, and a sentiment model. The speech-
to-text model was trained on web-scraped customer service call
audio files. The topic model was trained on a web-scrapped corpus
of a wireless carrier’s FAQs and forum posts. The sentiment model
was trained on a combined dataset of annotated IEMOCAP tran-
scripts and electronics reviews. The customer service call audio
was then passed through the speech-to-text program to generate
transcripts, which were then fed into the topic and sentiment mod-
els. These two latter models output predictions of overall topics and
sentence-by-sentence sentiment tagging. These two outputs were
then aggregated to produce visualizations of customer satisfaction
indicators such as sentiment over time during the call and senti-
ment associated with specific topics.

Wireless Carrier Call Requirement

Input

l Training Data

Speech-to-Text

+ audio

Call Web-Scraping

Reviews Web-Scraping
~ transeript
Topic Model Sentiment Model

IEMOCAP

» transcripts

»audio

+ sentiment

Visualizations

Figure 1: Diagram of general system architecture.

4 TECHNICAL DESIGN

The use of Convolutional Neural Networks (CNN) for natural lan-
guage processing is a fairly recent development. CNNs are most
well known for their success in image classification from filters’
natural proficiency for identifying components of an image like
lines and shapes. Whereas a CNN used on images can successfully
find patterns in shapes, the filters of a CNN used on language is
analogously able to find patterns in n-grams.

The network used for testing, pictured in figure 2 and elaborated
on in figure 3, has two convolutional layers. The first convolutional
layer has 64 filters with a filter size of 4, and the second has 32 fil-
ters with a filter size of 6. These were starting points to test that the
model has functionality. These parameters could be further tuned
to improve the accuracy of the model. A larger number of filters
and filter sizes in the range of 3-5 are recommended for sentiment
analysis using a CNN in order to capture a large amount of contex-
tual information based on the relations between closely adjacent
words. The dropout layer in the diagram is intended to prevent
overfitting.

Latent Dirichlet Allocation (LDA) topic models are widely used for
identifying underlying topics in a set of documents. Given K topics
to find, an LDA model will sort words in a document into various
topics based on the words they appear most frequently with and
their respective topics. This works through a generative process
where the LDA model assumes the following: a document is com-
posed of an assortment of topics and each topic is composed of an
assortment of words. It then reverse engineers this process in or-
der to identify the topics in a corpus. Figure 4 is the graphical plate
notation where:

— M is the number of documents

- N is the number of words in a document

- « is the per-document topic distributions

— pis the per-topic word distribution

— O, is the topic distribution for document m

- ¢ is the word distribution for topic k

— Zmn is the topic for the nth word in document m
— W is the specific word

For the purposes of sorting customer service transcript data into
topics, an online technical support discussion board and FAQ sec-
tion of a wireless carrier was used. By using this dataset, the topics
could be predetermined and the model could be tuned to identify
specific topics. Figure 5 provides examples of topic information
which can then be used to identify topics. In order to do this, f
was defined in the following way:

— For each topic, all words were initially given a 1 / corpus
vocabulary size distribution

— Then words that were predetermined to be more frequent
for a given topic were heavily biased (1000 times more weight)

This enabled the model to bias toward finding specific topics in a
document rather than determining its own.



hello

this

IS

bill

calling

Convolutional 1

Pooling 1

Dense Dropout Dense

Figure 2: Convolutional neural network architecture.

Layer (type)

Output Shape

param #

— Anaconda

input_7 (InputLayer)

(None,

101)

[

embedding_7 (Embedding)

(None,

101, 100)

762400

convld_13 (ConvlD)

(None,

25664

max_poolingld_13 (MaxPooling

(None,

convld_14 (ConvlD)

(None,

max_poolingld_14 (MaxPooling

(None,

flatten_7 (Flatten)

(None,

dense_13 (Dense)

(None,

dropout_7 (Dropout)

(None,

dense_14 (Dense)

(None,

Total params: 871,187
Trainable params: 871,187
Non-trainable params: 0

Figure 3: CNN layer type, output shape, and number of pa-

rameters.

o8

K

OnOn

(o —@

N

Figure 4: Diagram of smoothed LDA model.

5 DESIGN DECISIONS

Some tools were across all sections of the project. The general pur-
pose data science tools used throughout the project include:

- Python

The Anaconda distribution contains a plethora of data sci-
ence packages, including conda, which is an OS-independent
package and virtual environment manager, allowing for easy
package installation across machines.

FJupyter Notebook

Jupyter notebooks are documents which contain text and
embedded code which can be easily run within the docu-
ment. They are simple to share and provide high-quality,
interactive output for our python code. The prose-like for-
mat of Jupyter notebooks’ interpreter, markdown, and visu-
alizations environment facilitates code and concept collabo-
ration.

Pandas

Pandas is a powerful python library which is ubiquitous in
data science. In this project it was used for managing train-
ing and testing data.

Matplotlib

Matplotlib is a python library for data visualization. In this
project it is used for final visualization of sentiment analysis
and topic modeling data.

Pickle

Pickle is a python library for object serialization and data
storage. In this project it is useful for exporting model con-
figurations and related dataframes.

As this was a far-reaching project with many moving parts, a vari-
ety of technical tools were required to specifically accomplish the
goal of each major utility:

Python is a powerful, general-purpose programming lan-
guage with a robust set of libraries. It is an industry standard
with wide support networks.

— TensorFlow

TensorFlow is an open source library for deployment of high
performance numerical computation across different plat-
forms.

— Speech-to-text transcription

ffmpeg: Due to the way speech-to-text engines process au-
dio files, it is important to use audio encoding that is consis-
tent with that expected by the engine. FFmpeg is a free, light-
weight command-line audio encoder that fits seamlessly into
our audio processing workflow. The final encoding pattern
consisted of monochannel audio with a 16 kHz sampling fre-
quency, a 16-bit bit depth, and 300/3000 Hz high/low pass
filtering to specifically capture voice audio



Topic

Words

0 Account__services

1 Android_products
2 Apple_products
3

4 Other_products

0.037*"account" + 0.036*"service" + 0.028*"digit" + 0.012*"call" + 0.008"line"
0.088*"Ig" + 0.081*"galaxy" + 0.079*"android" + 0.012*"video" + 0.012*"one"
0.078™"i" + 0.068""apple" + 0.066""i0o" + 0.010*"update" + 0.007*"unlock"
Netwerk__Coverage 0.116*'coverage" + 0.113*"network” + 0.008*"tower" + 0.007*"device" + 0.006*"block"

0.010*"data" + 0.009*"plan" + 0.009*"update" + 0.008*"work" + 0.008""problem"

Figure 5: Example of raw output from the LDA model.

Audacity: Beyond encoding, our data required a small amount
of editing, mostly in the form of phrase partitioning. Audac-
ity’s "Silence Finder” utility allowed us to break long audio
clips into phrase-long sound bites and export them easily

for immediate transcription processing in DeepSpeech.

DeepSpeech: DeepSpeech is a free speech-to-text engine with
a high accuracy ceiling and straightforward transcription
and training capabilities. DeepSpeech also comes with pre-
trained models that can be refined via transfer learning to
improve accuracy on any particular type of audio, avoiding
the need for extended training times or an extremely large
dataset. Our transfer learning process involved removing
the final interpretive layer of DeepSpeech, replacing it with
arandomly-initialized layer, freezing all sublayers and train-
ing the final layer.

Topic model

gensim: gensim is a general topic modeling library for python
that has many useful features. Gensim was used primarily
for its LDA model as it is very powerful and easy to train
and tweak to our needs.

NLTK: NLTK stands for Natural Language Toolkit and is a
python library used for natural language processing. This li-
brary was used for our topic model to normalize documents
before running them through our LDA model.

pyLDAvis: pyLDAvis is a python package used for visual-
izing LDA models and was used for this project because it
interfaces well with gensim. pyLDAvis allowed us to easily
visualize our LDA model’s performance.

Stanford NER: Stanford Named Entity Recognizer model was
used for identifying named entities in a corpus such as per-
sons, locations, and organizations. This helped us identify
the subject of a document.

Stanford POS Tagger: Stanford Part of Speech Tagger was
used for identifying the part of speech for each word in a
corpus. This helped us identify the subject, verb, and object
of call transcript sentences.

— Sentiment model

Word Embedding: Tensorflow hub's word embedding mod-
ules were chosen as input for our neural network classifica-
tion models since they allow us to map sentences to numer-
ical values and preserving word order information. These
modules are easy to implement through tensorflow__hub
and come pretrained.

Manual Feature Selection (MFS): Manual feature selection
was used for the SVM and Random Forest classifier models
because it allowed faster training, and therefore could han-
dle a larger number of features. This allowed us to train our
model to recognize vocabulary specific to the topic at hand.

(MFS) NLTK Stemming: In manual feature selection, words
were stemmed so that words with the same root would be
recognized as the same word which reduced our feature
space. NLTK’s Stemming module was chosen for ease of use.

(MFS) Filtering: Words longer than 25 characters, words shorter
than 3 characters, words appearing more than 2000 times,
and words appearing less than 5 times were all filtered out

to reduce the feature space.

Bigrams: Bigrams were added to the feature space to em-
bed some information on word order.

Classification Models: A variety of classification algorithms
were explored to have comparisons for the accuracy of our
models on the training data. The models explored were an
SVM classifier, Random Forest classifier, LSTM Recurrent
Neural Network, and Convolutional Neural Network.

Sklearn, Tensorflow, and Keras: Tensorflow and Keras were
used for neural network training. Sklearn was used for the
other classification algorithms.

NLTK and NLTK-trainer: NLTK was used for sentiment anal-
ysis, since it has several prebuilt sentiment models. This lets
us quickly set up a standard model and compare against our
own model iterations.



Classifier Accuracy (Train/Test) | Accuracy (Train/Test)
IEMOCAP Amazon Reviews ¥ o8
SVM 0.804/0.520 0.999/0.623 E
06
RandomForestClassifier 0.860/0.539 0.988/0.627 @
2%
DNNClassifier - E 04
word2vec 250v 0.757/0.550 0.790/0.672
0z
word2vec 500v 0.812/0.549 0.831/0.681 L
universal sentence encoder 0.913/0.578 0.902/0.740 a . . |
negative neutral positive
nnim-en 0.874/0.574 0.821/0.665 Predicted
CNN (30 epochs) 0.820/0.474 0.992/0.656
LSTM (30 epochs) 0.853/0.534 1.000/0.749 Figure 8: Confusion matrix for training data on the final
CNN-LSTM (30 epochs) 0.876/0.516 1.000/0.708 LSTM mOdel'
. . . . -075
Figure 6: Accuracy results of different classifiers for senti-
ment. £
= -0.60
&
&
045
Feature Implementation DNN Accuracy for CNN £
Random Forest -
¢ 030
Manual Feature Selection 0.869/0.542 0.863/0.548 XXX
Tf_hub word embedding 0.913/0.578 XXX 0.921/0.635 _% 015
module g
PR r\egétwe neu‘lral pnslltive
Keras Tokenization XXX 0.627/0.598 0.820/0.474 Predicted
Figure 7: Accuracy results of different feature implementa- Figure 9: Confusion matrix for testing data on the final
tions. LSTM model.

6 PERFORMANCE RESULTS

- Speech-to-text transcription
DeepSpeech, the automated speech recognition (ASR) en-

gine preferred by our client, is an end-to-end trainable, character-

level LSTM recurrent neural network. DeepSpeech has been
used to produce a very low word error rate (WER), particu-
larly a 6% WER on LibriSpeech, an open-source 1000 hour
dataset of natural speech. 6% is approximately the human
error rate. Out of the box, DeepSpeech’s generic models re-
turned a 65.4% WER on our customer service call testing
data, more than 10x the WER of human processing.

This WER was ultimately reduced to approximately 18.7%
on the custom model generated using a very small corpus
of training data.

DeepSpeech functions best when translating sentence-length,
<10 second audio clips. The processing time required by Deep-

Speech to create a transcript per audio clip is between 4 and
9 seconds, with a mean of 7.14 seconds. Therefore, 5 min-
utes of audio could take DeepSpeech almost 4 minutes of
processing time.

- Sentiment model
Accuracy of various models were compared on 80/20 split
training/testing data made up of the IEMOCAP dataset and
a web-scraped dataset of electronic reviews with the senti-
ment classification accuracies contained in figure 6. These
were 3-class classifiers where the sentiment classes were
positive, negative, and neutral. Accuracies of different fea-

ture implementations were then compared, with results con-
tained in figure 7. Some feature implementations did not eas-
ily lend themselves to being run on different classification
models, so that data is absent.

Among the different datasets and implementations the best
results were on Neural Network Classifiers using the tf _hub
word embedding module. Of the word embedding modules,
the universal sentence encoder outperformed the other mod-

ules. A deeper neural network outperformed sklearn’s DNNClas-

sifier under the same feature implementation, and was the
highest performer of all the implementations at about 10%
higher test set accuracy than the second contender. The best
model iteration was an LSTM RNN that used tf hub's uni-
versal sentence encoder as feature input. This model had a
test set accuracy of 77.6% on a combined IEMOCAP and
electronic review dataset. Baseline accuracy for randomly
choosing a class for 3 classes is 33.3%.

Topic model

Using data scraped from a wireless carrier’s online discus-
sion forums and FAQ section, the training data was orga-
nized into 5 topics: accounts and services, android products,
apple products, network and coverage, and other products.
Each of these topics also included some keywords that were
seeded into the LDA model with bias (such as “iphone” for
apple products, “galaxy” for android products, etc). Using
this training data to train the LDA model, it was able to suc-
cessfully predict the topics on the testing data 57.6% of the



time. Baseline accuracy for randomly choosing a class for 5
classes is 20%. A visualization of this LDA can be found in
figure 10.

The part-of-speech suject identifier (PoSSI) model was trained
using corpora included with the Natural Language Toolkit
(NLTK) and then tested on the web-scraped wireless car-
rier data described above. This model was able to produce
coherent subject-verb-object (SVO) results, but because the
web-scraped dataset is unlabeled, there is not a quantitative
way of analyzing the accuracy unless all web-scraped data
was hand-labeled for part-of-speech. Hand labeling the en-
tire web-scraped dataset was not in the scope of this project.

Visualization and analysis of customer call data

Visualizing sentiment over the course of a call showed trends
we might expect: a green, positive, first sentence introduc-
tion followed by a red, negative, introduction of the problem,
and darker greens (i.e. more strongly positive sentiment) to-
wards the end of the call.

These are promising results that suggest sentiment analysis
could be applicable in the context of automating customer
satisfaction surveys.

A visualization of call topics is available in figure 10, and
visualizations for sentiment analysis available in figures 11
and 12. To see more call sentiment analysis overviews see

appendix C.

7 CONCLUSION

- Speech-to-text transcription

DeepSpeech is highly trainable but, with 120 million param-
eters, requires massive training corpora, hundreds of hours
of training, and expensive equipment. Transfer learning was
performed in the form of freezing all sublayers of the model
and retraining the final layer. Experimentation with altering
previous layers was unable to create improvements. Trans-
fer learning is a viable course of action to customize Deep-
Speech for future transcription requirements but should be
trained using a greater number of high-quality audio clips.

DeepSpeech performed significantly better on our testing
data than alternative ASR engines such as Kaldi and CMUS-
phinx as well as traditional ASR approaches such as Hidden
Markov Models.

Future work:

Further improvements could likely be made in preparing

low-quality call data for transcription, as well as in post-
processing the transcriptions to produce more correct speech
(as DeepSpeech is character-level, it sometimes produces

nonsense). Retraining the weights of DeepSpeech on a large,

industry-specific copora would also likely produce greater

accuracy, but would be significantly more expensive - both

in computation time and amount of data required.

- Sentiment model

Testing results for the LSTM sentiment model are available
in figures 8 and 9. The two biggest impacts on the accuracy
of the tested sentiment analysis models were data prepara-
tion and model selection. Data preparation and input for-
matting has a larger impact on a smaller dataset. Model se-
lection has a larger impact on a larger data set. Throughout
the various model iterations we tried, three different types
of formatting for data input were used:

— Manual Feature Selection (used in SVM and RandomForest-
Classifier)
Manual Feature Selection was done by using the tech-
niques stemming, filtering, and tokenization. Words were
stemmed using NLTK’s word stemming module, so all
words of different tenses would correspond to the same
token. Words were not included in the training/testing
sets when their length was less than 3, greater than 25,
when they appeared more than 2000 times or less than 5
times in the full corpus. Tokens were then created for all
viable unigrams and bigrams in the corpus.

— Pre-trained Word Embedding Modules (used in DNNClas-
sifier)

# Pre-trained word embedding modules from tensorflow__hub

were used for the DNN Classifier.
* The NNLM embedding is based on a neural network
language model with two hidden layers. The least fre-
quent tokens are hashed into buckets.
Word2vec is a token based embedding module trained
on a corpus of English Wikipedia articles.
Universal-Sentence-Encoder encodes sentences for use
in text classification. It was trained using a deep averag-
ing network and has the feature of encoding semantic
similarity.
— Tokenization
Words with a length less than one were removed, then
sentences were vectorized using Keras’ text preprocess-
ing module. A token was chosen for every word in the
training input. All sentences were padded to be of equal
length, and words were replaced with tokens.

*

*

Given the relatively small vocabulary size of our data set,
using a Pre-trained word embedding module gave the best
results, outweighing the effect of what model was used. Al-
ternative models were also developed, such as:

— SVM and Random Forest: These two models were the first
to be run as a way to gauge what sort of accuracy was
attainable, and what more complex models should be ex-
pected to beat. The sklearn SVM Classifier and Random-
ForestClassifier were used for this task. These are are two
types of commonly used high performing classifiers.

— DNN: This model is a prebuilt Deep Neural Network from
Tensorflow. This model was used to evaluate the perfor-
mance of a Neural Network on the dataset, and to test use
of tf hub's word embedding modules.

— LSTM: LSTMs are currently an industry standard model
for sequential data like natural language.



Intertopic Distance Map (via multidimensional scaling) Top-30 Most Salient Terms(")
0 50 100 150 200
PC2
network
coverage
lg
i
3 galaxy
4 android
apple
io
account
digit
service
update
video
data
one
line
unlock
screen
plus
mirror
message
wifi
pay
device
5 enable
tower
problem
upgrade
hotspot
Marginal topic distribtion international

Overall term frequency

2% [N stimated term frequency within the selected topic
5% 1. saliency(term w) = frequency(w) * [sum t p(t| w) * log(p(t| wl/p(t)] for topics t; see Chuang et. al (2012)
wltopiot) = A" p(w 1) + (1) * p(w| t/p(w): see Sievert & Shirley (2014)

Figure 10: A visualization of the topics and the vocabulary found in the training corpora.

Call 1

Transcript Overview Sentiment Over Time

thank you 5o much for caling carmier in altuquraue my name s mary Gonna be your dedicaled u out this
E¥iRGInelo mary his i vicky from carier cusiomer care and fom ho § having trouble Wih the iphone si
ight now it s totlly locked and it won 1 work e Canot Go anything on the Screen on my Goodness 0 he.

m doing fantastic thanks for asking hey |
just yos

0 ¥ou know pres the powss bton and ur it off oL e Wy BTt The e o and I bac  © A A

e e i S S T R ST Walaahat N /7

croen yos 50 what i wart you 10 o or me yeah 5o wha | wantyou 1 Gofo e ploase s we e gomna 6o & |
Sof resct on tis device essentaly epresents uh plling the tiery out bu because this one you cen o V o\ A \ V
It we gota Kind of ik long the way 0  want you 10 pess and o tha powsr buton and e homa

Koy tat s the round bution atthe botom there oress and hod hose down at e exact same tine and keep ° ° » - “ @
Hhem hekd e yeahi certence

‘soo ESEIIEANd jus! lot me know once it comes all the way back up s it sl thinking about it or did i Sentiment Distribution

Sower back U for o 6 o croon poworod back up 1 work~0 o SBRERHE CARYOTBSUILBNIGE »

m gonna send you a quick fext
message just make sure you ro able o focaive those just wanna make sure overytfing s for yan

ol

Topic Distributon

Android products|

o predus -

Figure 11: Top left: sentiment for each clip of the call displayed over the call transcript; Top right from top down: a heatmap of
the intensity of the sentiment of each sentence of the call, a line graph displaying the intensity of the sentiment during each
sentence of the call; Middle: the distribution of probabilities the call belongs into one of the five topic categories; Bottom: the
distribution of sentiment among keywords for each category.

— CNN: Convolutional neural networks have been shown sentences using LSTM layers.
to provide excellent results on sentence classification by
capturing information about n-grams through the use of With a small-to-mid sized training dataset, there is a much
convolutional layers. higher risk of overfitting to your training set when using
— CNN-LSTM: a combined CNN-LSTM model has been shown neural networks with thousands of parameters, such as RNN
to work well by encoding the regional information with and CNN neural networks. This can be seen by large dis-
convolutional layers and long distance dependencies across crepancies between testing and training set accuracies in

-



Sentiment Distribution for Topic Keywords

Account Services Android Products Apple Products

Network Coverage Other Products

neg neu pos neg neu pos neg

Figure 12: Sentiment distribution for sample service keywords.

our performance results. The ideal point at which to stop
training is right as the training and testing scores begin to
diverge where the training score continues going up, but the
testing score starts going down. In the context of training a
model, this means it is important to save checkpoints as you
train, so the model can be reverted to an older checkpoint
which is not yet overfitting. See Appendix B for an exam-
ple of training and testing scores over the epochs of train-
ing. Overfitting can also be reduced by adding a regulariza-
tion parameter to the loss function or to introduce dropout
layers. Adding dropout to layers has seen success in most
types of neural networks. However, this method does not
work well on RNNs with LSTM units, which is the type of
model that showed the greatest performance in this project.
To mitigate overfitting on our small training dataset we ap-
ply dropout only to a non-recurrent layer.

Future work:

— Manual Feature Selection: When doing manual feature
selection the NLTK stemming module was used to find
word roots. Lemmatization would likely give better re-
sults, but requires part of speech tagging. Implementing
this would create a more accurate feature space. This could
be done using NLTK’s WordNetLemmatizer and NLTK’s
pos__tag in conjunction.

- Training Data: Use a larger training dataset. The IEMO-
CAP data set has a vocabulary size of 3,000 words, which
is relatively small, and testing data could easily contain
unseen words. This was improved by the inclusion of the
electronic review dataset which increased the vocabulary
size to around 8,000 words. The data, furthermore, is not
as domain specific as could be. IEMOCAP very general
purpose, and performed by actors reading scripts about
everyday situations. The electronic reviews are for elec-
tronic products similar to those talked about in a technical
troubleshooting wireless carrier customer call, but are not
recent. More data specific to the content discussed in wire-
less carrier customer service calls could be introduced,
such as more recent electronic device reviews or manu-
ally annotated wireless carrier discussion forum posts.

— Pre-Trained Word Embedding Modules: Transfer learn-
ing could be implemented on these modules using a cor-
pus of text relevant to the type of text data on which clas-
sification is being attempted. In this case the word em-
bedding modules could be further trained on a corpus of
wireless carrier related text, such as data scraped from a
specific wireless carrier’s online FAQ section and discus-
sion forum posts.

— CNN and LSTM Neural Networks: The fine tuning of lay-
ers and their parameters, and feeding the model more
data could be improved on the neural network models.
These efforts would be for the purpose of increasing ac-
curacy and decreasing overfitting.

Topic model

The low accuracy result of the LDA model is expected as
LDA models are not meant to be forced into predefined top-
ics and instead should be used for finding hidden topic in-
formation in the corpus. SVO extraction using POS and NER
tagging was able to produce coherent results, but these re-
sults are not consistent across topics which presents a chal-
lenge when trying to sort documents by topics.

Future work:

The LDA model could be improved by using a more domain-
specific part-of-speech tagger (rather than the default POS
tagging function from NLTK) as well as better refined alpha
(document-topic density) and beta (topic-word density) pa-
rameters.

— The PoSSI model could be improved in a few ways:

* Using a POS tagger and a Named Entity Recognition
(NER) tagger trained on domain specific corpora

* A more domain-specific model for the POS tagger (cur-
rently uses a research model from Stanford)

* A more domain-specific model for the NER tagger (cur-
rently uses a research model from Stanford)

* A better method of extracting the subject from a tagged
document such as a parser in combination with a context-
free grammar for the domain specific corpora

* Speed improvements as the model can be very slow for
large documents.



Both of these models could be combined to identify topics
in the generated SVOs.

8 BIBLIOGRAPHY
A. G. Tripathi and N. S, "Feature Selection and Classification Ap-

proach for Sentiment Analysis,” Machine Learning and Applica-
tions: An International Journal, vol. 2, no. 2, pp. 01-16, 2015.

B. C. Busso, M. Bulut, C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. Chang, S. Lee, and S. Narayanan, IEMOCAP: Interactive emo-
tional dyadic motion capture database,” Journal of Language Re-
sources and Evaluation, vol. 42, no. 4, pp. 335-359, December 2008.

C. Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A Neural
Probabilistic Language Model,” Journal of Machine Learning Re-
search , vol. 3, pp. 1137-1155, Mar. 2013.

D. T. Mikolo, K. Chen, G. Corrado, and J. Dean, “Efficient Estima-

tion of Word Representations in Vector Space,” CoRR, vol. abs/1301.3781,

Jan. 2013.

E. D. Cer, Y. Yang, S.-yi Kong, N. Hua, N. Limtiaco, R. St. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar, Y.-H. Sung, B.
Strope, and R. Kurzweil, Universal Sentence Encoder,” CoRR, vol.
abs/1803.11175, 2018.

F. W. Zarembea, I. Sutskever, and O. Vinyals, "Recurrent Neural Net-
work Regularization,” CoRR, vol. abs/1409.2329, 2014.

G. M. Hu and B. Liu. "Mining and summarizing customer reviews.”
Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery Data Mining, Aug. 2004.

H. N. Jindal and B. Liu. "Opinion Spam and Analysis” Proceedings
of First ACM International Conference on Web Search and Data
Mining, Feb. 2008.

I. Qian Liu, Zhiqiang Gao, Bing Liu and Yuanlin Zhang. Automated
Rule Selection for Aspect Extraction in Opinion Mining. Proceed-
ings of International Joint Conference on Artificial Intelligence,
July 2015.

J. Y. Kim, "Convolutional Neural Networks for Sentence Classifi-
cation,” CoRR, vol. abs/1408.5882, 2014.

K. TensorFlow. (2018). Text Modules | TensorFlow. [online].
L.X.Maand E. Hovy, "End-to-end Sequence Labeling via Bi-directional
LSTM-CNNs-CRF,” Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, vol. 1, 2016.

M. J. Cheng, L. Dong, and M. Lapata, "Long Short-Term Memory-
Networks for Machine Reading,” Proceedings of the 2016 Confer-

ence on Empirical Methods in Natural Language Processing, 2016.

N. Y. Goldberg, ”A Primer on Neural Network Models for Natural

Language Processing,” Journal of Artificial Intelligence Research,
vol. 57, Nov. 2016.

0. J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, "Dimensional Senti-
ment Analysis Using a Regional CNN-LSTM Model,” Proceedings
of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 2016.

P. A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E.
Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
"Deep Speech: Scaling up end-to-end speech recognition,” CoRR,
vol. abs/1412.5567, 2004.

Q. J. Kunze, L. Kirsch, I. Kurenkov, A. Krug, J. Johannsmeier, and
S. Stober, "Transfer Learning for Speech Recognition on a Budget,”
Proceedings of the 2nd Workshop on Representation Learning for
NLP, 2017.

R. S. Bansal and Natural Language Processing and Machine Learn-
ing, "Beginners Guide to Topic Modeling in Python,” Analytics Vid-
hya, 29-Aug-2016. [Online].

S.J. Brownlee, "How to Develop an N-gram Multichannel Convolu-
tional Neural Network for Sentiment Analysis,” Machine Learning
Mastery, 14-Feb-2018.

T.S. Axelbrooke, "LDA Alpha and Beta Parameters - The Intuition,”
LDA Alpha and Beta Parameters - The Intuition | Thought Vector
Blog, 21-Oct-2015. [Online].

U. A. Crosson, “Extract Subject Matter of Documents Using NLP,”
Medium, 08-Jun-2016. [Online].

V. J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-
local information into information extraction systems by Gibbs
sampling,” Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics - ACL 05, pp. 363-370, 2005.

W. K. Toutanova and C. D. Manning, “Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger,” Pro-
ceedings of the 2000 Joint SIGDAT conference on Empirical meth-
ods in natural language processing and very large corpora held in
conjunction with the 38th Annual Meeting of the Association for
Computational Linguistics, pp. 63-70, 2000.

X. S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: Analyzing Text with the Natural Language Toolkit. Bei-
jing: OReilly, 2009.

Y. Smoothed LDA. Wikipedia, 2009.

Z.S.Ruder, "Deep Learning for NLP Best Practices,” Sebastian Ruder,
25-Jul-2017. [Online].



	1 Introduction
	2 Methods
	3 System Architecture and Design
	4 Technical Design
	5 Design Decisions
	6 Performance Results
	7 Conclusion
	8 Bibliography

