

Onion ltd. Final Report

Ross Starritt, Samuel Warfield,
Stephen New, and Dallas Andersen

Table of Contents
Introduction 2

High-level design 2

Requirements 2
High-level description/vision 2
Functional requirements 2
Non-functional requirements 3
Potential project risks: 3
Definition of Done 3

System Architecture 4
App 4
Database 4
Algorithm 5
Overall System Integration 5

Technical Design 5
Firebase 5
Pager 8

Design Decisions 10
Fragments 10
Fragment v4 10
Android app 11
Swipe to choose 11
Firebase 11
Photos 11
Login/Tokenization 11
Writing in Java 11
Default theme 11
Match presentation and storage 12

Results 12
Testing 12
Features not implemented 12
Lessons learned 12
Future work 13

1

Introduction
High-level design
We were tasked by Onion ltd, just Brian Webber, to implement a pet project idea for a
dating app named Kuppler. Kuppler has been designed to be a Android app inspired
by other apps in the current market like Tinder or Bumble. On startup the user is
prompted to login and verify their identity, this is done through Firebase cloud
service. The user then can either edit their profile or match make. If the user chooses
to matchmake, they are first taken to choose who they are matchmaking for. Then
they are shown possible suitors for the selected profile. See Figure 1 below for full
detail.

Figure 1: App Layout

Requirements
High-level description/vision
The final product is a social dating app in which users play matchmaker. The app has a
simple UI in which the matchmaker is presented with a profile to choose matches for.
The potential matches are then displayed to the matchmaker, and they get to vote if
they would be a good match. The owner of the profile is then presented with their
matches, based on aggregate votes, from an option in the overflow menu on the
matching page. User data is stored in Firebase’s realtime database. Computation is
performed in Firebase.

Functional requirements

1. Login page with token verification
2. Create profile or just be a matchmaker
3. Pick a profile to play matchmaker for
4. Accept or reject profiles, display when match occurs

2

5. The program must create a selection/sort algorithm based on profile data
6. The program must have a convenient user interface that allows users to

understand and use easily
7. The user is able to log in or create a profile, choose who to matchmake for, and

then is presented with possible matches.

Non-functional requirements

1. Program must be an Android Mobile application
2. Database must be Firebase
3. Use of GitHub repo for version control
4. App will be written with Java
5. Program IDE will be Android Studio 3.1.2
6. Code will follow Google Java Style Guide
7. App must be engaging to end user

Potential project risks:

A. Technology Risks
1. We may encounter issues as how to connect the app and the database
2. Firebase interface will be tricky
3. Database management and population in general
4. Leaning to use AWS to integrate with Google FireBase

B. Skill Risks
1. Only one member is very familiar with Android app development, others

would need to self-learn
2. All members are generally unfamiliar with Firebase

Of the aforementioned requirements, all was met except for implementing AWS into
our app. This is because Firebase provided all the functionality we desired and
learning AWS after learning Firebase would take too much time given the six weeks.

Definition of Done
The client, Onion ltd., is looking for the minimum viable product. In the case of the
Kuppler App this means a a mobile interface with all basic functionality for the dating
app. This includes profile creation and browsing, and an intuitive UI/UX design. This
includes a working backend and an algorithm of our choice to best match suiters. The
app should allow users to login and matchmake for another user.

For backend resources the client has made it clear that they would like to use a cloud
service provider for computation and database management. To meet this
requirement we are using Firebase by Google as it allows for easy database and
authentication. By the end of the project the client would like to have the back and
front end easily deployable by a new team if needed. Users with a completed profile
in the matchmaking pool can view matches on login based on aggregate votes.

3

After the six week period, we have successfully met these goals in creating the
minimum viable product, and have thus considered this project done by our client’s
perspective. Code has been delivered via GitHub.

System Architecture
App
After the user logs in, they are presented with a choice to select matchmaking or
profile creation. When the profile is created, the user then match-makes. The
algorithm selects profiles for the user to matchmake for. After selecting a profile, the
app presents the user with profiles which are potential matches (see Algorithms
section for more details). The user then decides if the two profiles match. At this point
the main usage loop has been reached, and the user repeats the actions of
matchmaking indefinitely. See Figure 2 below for app flow and Figure 3 for backend
integration details.

Engaging the user is a big part of the app. Engagement will come across in the main
idea of matching for people, playing on the sense of control. Keeping interest of the
user will come specifically with new people to match for, and a chance to create
someone else’s happiness is a motivation for continuous use of the app.

Figure 2: General Application Usage Loop

Database
Google’s Firebase Realtime Database is our database software. It handles user login
authentication, user and match data storage, and computations. Particularly, for each
registered user in the matchmaking pool, Firebase will store name, bio, gender,
seeking gender, ZIP code, matches as UUIDs, and a profile picture. Any logged in user
may read any user data, but only the actual user can modify their own information and
other’s matches and report flag.

4

Algorithm
Firebase will also be handling the matchmaking algorithm, determining what profiles
to show to users. As each user in the matchmaking pool provides a ZIP code, our initial
implementation will yield all profiles with the same ZIP and desired gender as the
profile they are matchmaking for. A match will be added to a user’s account on match
once, it is possible for one person to show up multiple times as a sign they might be
compatible. Currently as flat-results are not yet dealt with, the current threshold to
be displayed as a match is 1. This algorithm is extremely naive and open for extension
in the future.

Overall System Integration
Overall there are three points of contact between our Firebase cloud service and the
local device. They are as follows: user login services, profile creation and editing and
selecting profiles to match with. This can be seen below in Figure 3, the diamonds
represent the two different systems where as the squares represent functions and
actions that each system can take. Lastly the circles represent information, which is
completely stored off device until it is requested by user devices.

Figure 3: Overall System Architecture

Technical Design
Firebase
Firebase is a comprehensive mobile development platform provided by Google. For
the scope of the project, the usage remained in the free tier. Thus scalability for

5

Firebase only requires a credit card. Integrating Firebase adds functionality like user
authorization and management, real-time databases, and cloud storage for photos.

Rather than dealing with user tokenization ourselves, Firebase handles login
verification and possible email verification (not implemented). Currently our
application supports generic email/password and Google sign-in, see Figure 4. Upon
account creation, Firebase automatically assigns the user a unique user ID (UUID).
Firebase’s authorization functionality ensures that the only logged in users can access
the application. User management is also included: in the Firebase console admins
may reset passwords, delete accounts and create accounts.

Figure 4: login page

6

Once a user is logged in and creates a profile, the user’s information is stored in
Firebase’s realtime database. Only the logged in user may write to their information
stored in the database, but by nature of a dating app, any logged in user may read any
profile in the database. The structure of the database is one JSON file (extra
databases may be obtained upon purchasing). The current structure can be seen
below in Figure 5. Note that the first key under users is the UUID of the account and
below the UUID is the profile information. In addition to storing user specific
information, the profile’s matches are also stored under mUnseenId.

Figure 5: Firebase Database structure

To display the profiles to matchmake for and the potential profile-specific matches, a
query to Firebase is required. Logged in users may read all information in the
database. As Firebase is a real-time database, accessing information requires
onDataChange Listeners. Additionally, such listeners run as async tasks, meaning that
load time must be baked into the app to have profile accessible when prompted by
the user. There are two places where queries are called preemptively. First, after a
user logs in, the app queries the database in the background for profiles to match for.
Second, once the profile to matchmake for has been selected, before launching the
page showing more information about the selected profile, the database is queried
for profiles that match the desired gender and ZIP location.

7

As each profile mandates a profile picture, images are stored with Firebase’s Cloud
Store: a way to store images in a Google Cloud Bucket. Once again, retrieving the
image as a byte array is also an async task. The two aforementioned preemptive
Firebase queries also allows enough time to retrieve the respective profile pictures.
By matter of profile query, any logged in user can retrieve any profile picture.

Pager
The pager is how the application displays profiles to the user. Each profile in the pager
is its own fragment: a piece of an activity that contains some user interface and
functionality of a particular screen in an app. After profile information has been
retrieved from Firebase, a fragment is created for each profile for displaying in the
pager. Paging between fragments of a profile required many moving parts, see Figure
6 for an example profile in the pager.

Swiping is handled innately by the pager activity, which calls the next appropriate
profile. The pager’s OnPageChangeListener function allows the app the determine
the current profile displayed for reference in both Firebase and the pull algorithm. As
the pager is recycled multiple times, starting the pager activity’s intent is crucial. An
intent is a call to the Android OS to move to another activity while carrying extra
information between the two activities. For instance, once a profile has been chosen
to match for, the intent launching the pager carries along the profile’s UUID for ease
of recording matches in the database.

Boolean information is also bundled with the intent to determine which stage of
matchmaking has been called and what function the pager will take on. Similar
handling of intents logic was applied to view the user’s matches. Particularly, the
profile does not have a button at the bottom of the screen, see Figure 7 for a
matched profile.

The overflow menu, the three dots in the upper right-hand corner, is also included in
the pager. On click, the overflow menu provides the following options: Report
Account, Edit Profile, Sign Out, and View Matches. Adding intents to the menu lends
its functionality. To manage memory, once an intent is called, the activity stack, a
record of previously visited activities, is cleared.

8

Figure 6: Pager Activity Matchmaking Choice

9

Figure 7: Matched Pager

Design Decisions
Fragments
The choice to use fragments instead of just activities is a choice made to conform to
the industry standard. Using fragments also allows for more degrees of flexibility and
design in how the app will function and even look. Using just activities to house
functionality is unnecessarily restrictive and can be too large to effectively design and
retain readability.

Fragment v4
Importing and using fragments v4 is the preferred method to capture users below the
APK level of 19 which we are designing for. This does limit cutting edge use of new
technologies and prevent features that could make the app more flashy and new
without thinking too much towards market and compatibility.

10

Android app
As a team we decided that the Android platform was the best option for the Kuppler
project. We reached this decision after taking into account several factors such as
alternative platforms and past experience. Ultimately after researching the market
we found that of the mobile market over 85% of global users use Android devices. In
addition a team member, Dallas Andersen, had past experience in Android
development. We decided to avoid an Electron app due to no one in the group having
web development experience.

Swipe to choose
We chose to use a pager for displaying profiles because we feel it is more important
to show more profile information to the users rather than show several profiles at
once. The purpose of the app is matchmaking, so personal information like the bio is
very important in choosing good matches.

Firebase
For the velocity required to achieve MVP in these six weeks, mobile development
platforms were highly desired. Of all the alternative, such as meteor, Firebase was
the clear choice for its extensive functionality in providing user authorization and
management, real-time database, and cloud storage. All of these features were
ultimately vital in creating the MVP.

Photos
Photo management proved quite difficult. Rather than uploading images directly, the
application accesses the camera and collectes the taken picture. Before uploading to
the Google Cloud Bucket via Firebase’s Cloud Storage, the image is compressed to
about half a megabyte and rescaled to less than 4096 by 4096 pixels.

Login/Tokenization
For all users of the application, they must log in even if they only wish to matchmake.
The decision to force all users to create an account stems from incentivising user
activity, and recognition for any good matchings they have.

Writing in Java
We decided to develop with Java in Android Studio 3.1.2. The alternative was Kotlin.
All members of our team are familiar with Java, so choosing Kotlin would have slowed
down the development pace. Additionally most of the Firebase documentation for
Android is written in Java. Thus a proper understanding of Kotlin is needed to
translate and understand the documentation. The overall base experience and
documentation informed our language choice.

Default theme
Using standard themes and overall layouts are the easiest solution to meet the goal
of a “minimum viable product” detailed in the design document. It’s not outstanding
but usable and serving the purpose of housing the app. Using another theme requires

11

some refactoring at this point in time and using other themes is not necessary, making
our own is just to much to focus on while functionality is still on the line.

Match presentation and storage
We are storing matches as a list of UUID’s as strings of whomever has been matched,
the simplest identifying information in the database. The list is stored under the user
as an attribute in Firebase. Users viewing matches will be presented with a pager of
the profiles they have been matched with. With list’s natively supported in Firebase it
made parsing it in the app easier than other supported data types, like sets.

Results
Testing
The app has been tested and works on the following phones: a Google Nexus 5, a
Google Nexus 6, a Google Pixel 2, and a Motorola Moto Z Play. These ran Nugget,
Oreo, Kitkat, Lollipop and had different resolutions to view different layouts and their
feelings on flow. All Android version KitKat and forward are supported, the largest
share of the fragmented Android market. There is a hardware issue exemplified with
the Pixel 2 where all of the pictures are forced into a landscape orientation: there is
not much from a software perspective to fix it without much more time and
resources. Despite efforts of image compression and some memory management,
usage on devices with minimal RAM leads to an out of memory error due to image
loading, asking for more memory from the OS is a possibility but limiting the extent is
out of scope for the project and timescale.

User authentication was verified through manual testing and configuration, though
not with Firebase’s confirmation system. We opted for the standard and familiar
Android layouts. As such, our UI reacts just as one would expect; our client Brian
Weber only wanted to make changes in the order that our app presents the user with
information. Mr. Weber approved each individual page layout, remarking on the
intuitive button layout.

Features not implemented
Flat data was not explicitly dealt with in the pull algorithm. Distance from location
was also not considered in the algorithm, and use of a zip code api will make this
process work well. No other contact information besides email was received profiles.

Lessons learned

● Making a unified front end that is user friendly and looks nice for an app is a
near impossible task, even if relative units of DPs are used and look fine on
some devices other issues always arise on different sized devices.

● Firebase is a wonderful tool full of features devs don’t want to implement like
verified login and non-local storage and pulling in JSON format. It also is easy
to use from both front end and back end development is also a giant boon to a
short timescale of the project.

12

● However, as Firebase is a real-time database, accessing data requires listeners:
an async task. Therefore pulling information from Firebase requires some load
time.

● Memory management is as important a design philosophy cornerstone as
others such as power conservation and greedy processing avoidance

● Reusability is an important design feature to use for large projects, like reusing
our pager xml and some functionality is able to be reused and cut down on
repeat code

Future work
For the future, the profile pull algorithm could adopt a rating system based on the
number of user matches to better match profiles of similar ranking. Additionally, the
algorithm will more precisely consider variables such as age and location. In largely
populated areas, flat results are possible; to avoid this, the algorithm must adapt and
prioritize matches with a small amount of matches to increase the signal. To combat
the difficulty of image memory management, libraries such as Facebook’s fresco
would help better manage images and the memory. For scalability, a restructuring of
the database is required, particularly storing users based on geographical location will
allow for more efficient processing and accessing.

13

