
 

Field Session Final Report 

 

Fuzzy Matching Profiles 

 

FullContact Inc. 

 
Members 

John Honan, Gregory Connelly, Austin Sonju, Kepler Novotny, Daniel Winternitz 
 

   

1 



 

Introduction 
FullContact is a contact management company, whose focus is building meaningful relationships                       
between clients and the people who matter most to them: contacts, connections, or customers. In                             
addition, FullContact uses publicly available datasets to provide information and insights to foster                         
connections with people in more meaningful and authentic ways.  
 
FullContact believes that life is all about people and the relations between them. On their                             
website, under the about us tab, they say “Our core purpose is to make relationships better. We                                 
believe that relationships, are driven by trust; trust is driven by empathy and understanding;                           
understanding is driven by insights; and insights are driven by data.” 
 
FullContact works with everyone from an individual who has to manage a few contacts to                             
multinational corporations who have to track and maintain thousands.   
 
Our project is to develop a program that can determine a probability whether two online profiles                               
belong to the same person. These profiles have information such as: name, location, age, etc.                             
This is done using a process called fuzzy matching. Fuzzy matching is a technique that matches                               
two objects even if all of the information isn’t present or exact matches. 
 
Our projects success in identifying matches is measured with precision and recall. Precision is the                             
number of true positives divided by the sum of the true positives and false positives. In the terms                                   
of this project, it is the number of correctly identified matches divided by the total number                               
identified matches. Recall is the number of true positives divided by the sum of the true positives                                 
and false negatives. In the terms of this project, it is the number of correctly identified matches                                 
divided by the total number of matching profiles. 
 

 

2 



 

Requirements 

Functional Requirements 
 
The code functions overall to take in two profiles as an input and returns the probability that they                                   
belong to the same person. This uses a variety of sub functions to process different factors into a                                   
final probability: 

● A sub-function that compares names of two profiles and returns the probability that they                           
are from the same person.  

● A sub-function that compares locations from two profiles and returns the probability that                         
they are from the same person (Eg: One profile with Denver,CO and other with                           
Golden,CO could belong to the same person - one being home and the other being                             
work).  

● A sub-function that compares two job titles and their categories which returns the                         
probability that they are the same. 

● A sub-function that compares organization titles and their variations which returns the                       
probability that they are the same. 

● Other data from online datasets, such as census data by region to supplement/define                         
multivariate probability calculations will supplement this probability as well. 

● A merge function brings all of the sub-functions together returning a final probability. 
 

Non-Functional Requirements 
 

● The code is written in Java.  
● Git is used for version control.  
● The input is a csv file with multiple profiles and each profile contains pertinent information                             

(name, location, etc.)  
● Intermediate and final results are returned as probabilities [0-1.0].  
● Precision and recall are calculated in each step.  
● Code is thoroughly tested, using unit tests that mimic actual usage in production.  
● Project can be compiled into a jar file. 
● Code should be portable. 

○ Able to be integrated with other FullContact products. 
○ Able to run on many machines seamlessly. 

 

Potential Risks 
 
There are certain technology risks that have to be considered when writing and using the code.                               
Working with sensitive data is an issue especially with GDPR regulations in place. It is also not                                 
uncommon for insufficient information to exist (no name, location, job title, etc.) so there is an                               
issue with always confidently predicting matches in this case. The code is optimized to produce                             

3 



 

the best results possible but there will always be some incorrect results (false negative and false                               
positive). There are also some skill risks associated with this project. Statistical methods have to                             
be applied to code effectively and was challenging at times deriving the best/correct equations to                             
use. Correctly documenting the code is a skill everyone actively practiced. 
 

Definition of Done 
 
The project required that we create separate functions to determine probabilities based on                         
individual components (name, location, organization, job) and combine the intermittent                   
probabilities in another function to determine the probability of whether or not the profiles are                             
connected. The completed project consists of a .jar file along with the source code. In addition to                                 
the project, we created a presentation to demonstrate it to the FullContact engineering team. All                             
parts of the project are covered by unit tests. All parts are documented internally with the why,                                 
what, and how of that component’s operation. The precision and recall was documented for each                             
field comparison and the probability merge functions throughout the project. 

System Architecture 
Our project is designed to take in a series of pairs of profiles which contain basic information                                 
about an individual. This information includes a person’s name, age, gender, location, the                         
organization they work for, and their job title. Our project uses this information to determine                             
whether or not the profiles in each pair match. We chose to only look at two profiles at a time so                                         
that we could quickly run the program on one machine and not have memory issues when                               
attempting to work with several profiles at once. 
 
Since we are only comparing two profiles at a time we needed to structure the input file to reflect                                     
our design decision. Our input comes from a csv file that contains pairs of profiles for the program                                   
to compare. The first item in our appendix is a screenshot of a sample input file. From this image,                                     
it can be seen that the first line is the header, containing the names of all the different attributes                                     
for the profiles. After the header file we have the different profiles. These profiles are in pairs,                                 
which the program looks at to calculate match probabilities. It compares the first profile with the                               
second, the third with the forth, and so on until we reach the end of the file.  
 
Determining whether each pair of profiles match is done using a series of functions called                             
comparators. These comparators look at different attributes of the profile and determine how                         
likely it is that the attribute matches across the the different profiles.  
 
The first comparator is the name comparator. As the name suggests, this is the function that                               
determines if the names are the same across the different profiles. This is not as simple as just                                   
comparing two different strings. We use data from around the world to determine which names                             
are the most popular by region and then use that information to determine the likelihood that the                                 
names match. We also needed to determine if it is possible that one profile is using a nickname                                   

4 



 

while the other uses a full name. If one profile has the first name Joe and the other is Joseph then                                         
it is still possible that the profiles match since Joe is sometimes interchangeable with Joseph.  
 
The location comparator is similar to the name comparator. We can not just compare strings to                               
determine if two profiles are in the same location. It is possible for a person to have profiles from                                     
two different locations. A person could live in Denver and go to school in Golden, for instance.                                 
This could result in two profiles, one with a location in Denver and the other with a location in                                     
Golden, corresponding to the same person. The comparison is done using a dataset that contains                             
the global population distribution as well as the latitude and longitude for every city. This allows                               
us to determine the probability that the locations match based on the population distribution as                             
well as the distance between the two locations.  
 
Comparing organizations across the different profiles is a very different process. The key to this                             
process is normalization. We needed to ensure that if the same organization was represented                           
differently across two profiles, they can still be matched as the same organization. It is entirely                               
possible one profile working at IBM and another profile working at International Business                         
Machines represent a match. These are simply different ways to represent the same company, so                             
we had to ensure we accounted for this in our algorithm.   
 
The fourth is the gender comparator. This is the simplest of the comparators because the listed                               
genders should be exact matches. Either the genders match across the profiles or they do not                               
match, and based on FullContact’s dataset, this is normalized to allow direct string comparison. 
 
Age is not always disclosed exactly; some profiles will have an age while some only have an age                                   
range attribute associated with them. We needed a way to check whether these attributes are                             
the same across the different profiles. It is entirely possible that one profile could have an age                                 
and the other could only have an age range, so we needed to ensure that the ages matched with                                     
the age range to determine the possible connection between the profiles. 
 
The final comparator looks at a person’s job title and decides if the job titles are the same across                                     
the different profiles. Similar to the organization comparator, the job comparator needs to                         
account for different representations of the same job. It possible that one profile could say                             
‘C.E.O.’ and the other simply lists ‘executive’; these are the same job title despite being                             
represented differently.  
 
Each of the above comparators determines the likelihood that its associated attribute is the same                             
across the two profiles. After gathering all of that information, we need a way to combine all                                 
these probabilities into something useful. This is done in something we call the merge function.                             
This takes all the values returned by the comparators and determines whether the two profiles                             
are the same or not, by calculating the probability that the profiles match.  
 
A simple diagram of this overall project structure is included below within the Technical Design                             
specifications. 

5 



 

Technical Design 

Data passing/management 
 
To handle the data after it was read in, Profile objects were created, which each hold all the                                   
information about an individual profile. Two consecutive profiles were read in and used to create                             
a profile comparator object, which holds information about the two potentially matching profiles.                         
This object performs each comparison function, testing the probability of the items matching,                         
before using these results in the merge function. The merge function then uses mathematical                           
statistics procedures to calculate a final probability. 
 
This data management scheme was made to minimize unnecessary data passing, and allow                         
objects to hold all information individually that they would need. The downside is a slight                             
decrease in modularity; swapping out the function of any comparator must be done from the                             
function within the object itself. While this makes an arguably bloated class structure, the                           
comparisons against profile data as class attributes reduces the data handling, simplifying the                         
process of passing pieces through this structure. 
 

 
 
 

6 



 

Handling US vs non-US locations 

 
Our location and name comparators depend on various data files in order to produce meaningful                             
results. We were able to find more meaningful data for the United States than for other countries. 
 
The dataset for locations inside the US has every zip code, along with the city, state, location, and                                   
population for the zipcode. Item 4 in the appendix shows a piece of the csv used in the location                                     
comparator for locations inside the United States. Of the data in the csv, the latitude/longitude                             
locations and populations are very helpful in our calculations. Given two locations we can                           
compare their latitude and longitude locations to determines how close they are. The data allows                             
us to determine the population of cities the profiles are from, and the populations of the areas                                 
around the cities. This dataset is complete for every zip code in the US, allowing us to calculate                                   
accurate probabilities for all profiles located inside the US.  
  
The dataset for world wide locations can be seen in Item 6 in the appendix. It has data broken                                     
down by city, not zip code. In addition, the population info is incomplete. It has the population for                                   
large cities, which we can use to create relatively accurate calculations if the profiles are located                               
in large cities. For profiles in smaller cities, our calculations must rely purely on the distance                               
between the profiles. As a result, calculations made using this dataset are not as precise as those                                 
using the former dataset. 
 
We also had more meaningful name data for locations inside the US than those outside. We have                                 
data on the frequency of each name for each state in the US. For places inside the US, we can                                       
calculate the number of people in the state with a specific name. This information is used to                                 
calculate the probability the two profiles belong to the same person, based on the relative                             
frequency of the name. 
 
For countries outside the US, we do not have data on the frequency of each name. We only have                                     
a list of common names in each country. Rather than knowing the frequency of each name, like                                 
we do for profiles in the US, we only know whether the name is common for profiles outside the                                     
US.  
 
In order to maximize accuracy, profiles located inside and outside the United States are handled                             
using separate processes, allowing us to utilize the more complete datasets when possible. 
 

Reducing File I/O 

 
The project requires extensive use of datasets in order to make meaningful calculations. Reading                           
in the datasets can be time extensive, most notably reading in the 180 MB “Global Location                               
Data.csv” file used by the location comparator for profiles located outside the United States.                           
Initially, everytime a profile was located outside the US, the program would comb through the file                               
finding every city located in the same country as the profiles, store the info of each city in an                                     

7 



 

object, and store all the objects in an array list. This process would be repeated for every set of                                     
profiles located outside the US, and resulted in a lot of time being spent on file I/O. The code for                                       
this implementation can be seen in Item 3 in the appendix. 
 
In order to speed up the program, we changed the program so that after the information for the                                   
cities in a country are read in and stored in the array list, the array list is stored as the value of a                                             
map, with the country being the key. This removed the unnecessary file I/O of reading in the                                 
same information multiple times. The code for the new implementation can be seen in Item 4 in                                 
the appendix. 

Decisions 

Language Choice 
 
When our project began we were given free reign to decide what language we wanted to use.                                 
However, our client prefered that we use one of the JVM languages. The two he talked about                                 
were Scala and Java. Our client did not care which of these two languages we used (because the                                   
source code underneath is the same). In the end we decided to use Java over Scala. We chose                                   
Java because everyone in the group was familiar with Java and how to use it. This does not                                   
matter to our client because the source code for Java and the source code for Scala are the                                   
same so our client can easily convert our Java code to Scala. 
 

Data Design 
 
This project uses a lot of external data. The data is saved in several .csv files. The reason we                                     
choose to use csv was because we needed to combine a lot of smaller datasets to make the                                   
large one that was used, and because .csv files are easy to parse and extract information from in                                   
code. This was especially true for the location matching dataset; we needed to take several                             
separate datasets and combine them in to one in order to get a dataset that would have the                                   
location (latitude and longitude), city name, state name, zip code, and the population broken                           
down by zip code. We did not use java to combine the datasets, but we chose to have the                                     
datasets saved as a csv to allow us to easily import the data in to the java program.  
 
The other way we stored our data is through json files. These files would then be imported into                                   
the project. Our field session client provided, for us to use, a python file that contained a                                 
dictionary. This dictionary had a list name, for each name there were variants of each name and a                                   
list of common nicknames. As an example for the name John the list would contain Jon and Jack,                                   
since Jon is a variant of John and Jack can be interchanged with John. This information is                                 
essential for getting the name comparator to work so we needed to find a way to move this into                                     
our project. We ended up using python to convert the dictionary to a json file. We then imported                                   
the json file into our program utilizing the gson library.  
 

8 



 

Reuse/Library Choice 
 
We are writing this project from scratch. This means that when we started the project we started                                 
with an empty java file. This file did not contain anything for the project. We met with our client                                     
and they provided us with the overall concept for the project and we started from there. Due to                                   
this project structure, we did not reuse any significant amount of code from any source. 
 
This project does use some java libraries. The first that we used is the Gson library developed by                                   
Google. This library assists with reading in json files and eventually converting this format to a                               
java object. This library was used to import the json file described above. The JUnit library was                                 
also imported to be used with a suite of test to ensure the code was fully functional. 
 

Implementation Discussion 
 

● This project is broken down into two major parts: merging and comparing.  
● Comparing is in reference to the different comparators, the four major ones we have                           

written for the program are the Name Comparator, Location Comparator, Organization                     
Comparator, and Job Comparator. 

○ Name Comparator​: This is a function that returns the probability that the name                         
field of the two profiles are the same.  

○ Location Comparator​: This function returns the probability that the location fields                     
are the same.  

○ Organization Comparator​: Similar to the other two functions this function returns                     
the probability that the organization field/fields are the same across the different                       
profiles.  

○ Job Comparator​: Returns the probability that the job titles are same or similar                         
based on the raw string and category of the job. 

○ Simple Comparators​: These are comparators which we wrote but they are not                       
that complicated. These comparators can return 3 different values, based on                     
whether the attributes are matching, non-matching, or inconclusive/missing data. 

● The merging is what pulls the different comparators together. This is the function that is                             
responsible for assigning weights to the probabilities, meaning that the results from each                         
comparator does not have the same weight when determining the final probability. If we                           
have two profiles then the probability that the names match is more important (and should                             
therefore have a higher weight) than the probability that the exact locations match across                           
the profiles.  

● Note: For the above, if we have values missing or not specified in the input then the                                 
comparator returns 1. Due to the mathematical structure of the calculation, comparators                       
with a value of 1 do not affect the final merge calculation. 

 

9 



 

Results 

Missing Features 
 
We were able to implement all the features we hoped to at the beginning of this project. We also                                     
found time to implement more features that were not outlined at the beginning of this project.                               
Originally we only thought we would be able to get the name comparator and the location                               
comparator done. However we were able to finish both of the above comparators and then some                               
other ones as well. We were able to finish the organization, gender, age, and job title                               
comparators.  
 

Performance Testing Results  
 
In this project the precision is more important than the recall. FullContact can use a human in the                                   
loop verify the matches generated by this algorithm before implementing them in production.                         
They want the matches sent to the human in the loop to have as high a confidence as possible. In                                       
testing we found we had a .919 precision and a .819 recall. These are results that we are happy                                     
with, but that does not mean that this result cannot be improved upon later. We also found that                                   
the project used less than 2 gigabytes of memory to run. There is a lot of data going in to this                                         
project and memory use was a issue that we ran into while working on the project.  
 

Summary of Testing 
 
We have done a lot of testing of our code. Every function has tests associated with it to ensure                                     
that the function is working correctly. We also implemented tests to ensure we were reading in                               
files correctly. Finally we made a dataset containing 1,000 different profiles (500 pairs) to use as a                                 
testing dataset. It was compiled from a sample dataset provided by our client. This allowed us to                                 
test the performance of our function and compare it with the actual results from the table.  
 

Usability Tests 
 
Since our project is a proof of concept there was not a lot of usability tests being performed.                                   
However we did ensure that using the project was simple (assuming you installed the correct                             
libraries). The main issue we ran into when it came to usability resulted from incorrectly formatted                               
input files. Our client also specified the use of a java executable file so we needed to test and                                     
ensure that file was working correctly.  
 

Future Work 
 

10 



 

There is a lot of work that can still be done to this project. The most obvious is to add more                                         
comparators. The more comparators that you have the more accurate the results are going to be.                               
There is a lot of organization that can be done to the project. The way we have things set up now,                                         
the majority of our codebase exists within a single class. In retrospect, it may have been easier to                                   
divide this across multiple files and classes to increase the level of abstraction for each part of                                 
the program. This would allow future developers to more easily swap out components of the                             
code with an improved section if future development resulted in better versions of each module.  
 
Machine learning was also discussed as a potential option to implement with the merge function.                             
Unfortunately, we did not have enough data to execute this correctly as test data had to be                                 
manually generated, as sample profiles did not inherently contain whether the profiles match. We                           
therefore had to use a with a more statistically driven approach. In the future, machine learning                               
would be a very effective implementation to make this piece of software even more accurate. 
 

Lessons Learned 
 
For most of us in this group this was the first time we worked at a company. As a result we gained                                           
good experience about the daily life of a software developer outside of school and what to                               
expect when we graduate and get a job. Specific aspects such as working in teams and utilizing                                 
the agile process were definitely emphasized.  
 
We also worked with a variety of data of different sizes and learned that data can often be                                   
incomplete or unreliable therefore it is important your code knows how to deal with various                             
situations.  
 
As part of this project, we were able to attend the Connect 2018 conference. FullContact invited                               
us to attend this conference and we learned a lot about the field. There were guest speakers                                 
from around the country. The speakers who presented at this conference were men and women                             
who are at the top of the computer science field. It was really incredible to listen to their                                   
presentations and see how the skills we are learning here at Mines will be applied when we start                                   
to work in the tech industry. 

   

11 



 

Appendix 
Item 1: Screenshot of a input file.  

 
 
 
Item 2: Original function for reading in the location data for outside the US 

 
 
   

12 



 

Item 3: Revised function for reading in location data for outside the US 

 
 
Item 4: Piece of US location data 

 
 
Item 5: Piece of data file from outside the US 

 

13 


