
EverSleep Dashboard

Shea Styer, Alex Michael, Jacob McBee, Jensen Krone

June 20, 2018

1

Contents

1 Introduction 1

2 Requirements 2
2.1 Functional Requirements . 2
2.2 Non-Functional Requirements . 2

3 System Architecture 2

4 Technical Design 4
4.1 Access Control . 4
4.2 Overall Design . 4

5 Design Decisions 6

6 Results 6

7 Appendix - Usage Guide 6

1 Introduction

EverSleep is a startup company in Golden, CO that is aiming to help the average American better
understand their sleep and hopefully improve it. Their product (Figure 1) is a finger sensor that
takes multiple measurements every minute, and interfaces with their mobile app to analyze the
data and provide coaching to improve sleep. These measurements include pulse, blood oxygen
saturation, snoring, movement, and several other metrics.

Figure 1: The EverSleep Tracker being assembled

While the idea of measuring these statistics throughout the night is not a new idea, it has only
been implemented in expensive sleep labs that are only available to certain people. Even then, it
is far too expensive to constantly attend these sleep labs and the results are rarely representative
of how a person sleeps in their own home.

As the company grows and amasses more data, the founders of EverSleep hope they can run
statistical models on this data and eventually make advancements in sleep research.

When users dont understand the results the mobile app gives them, they contact EverSleep
for help. EverSleep employees then retrieve the users result from the database in order to help
them. The previous web app for doing this had very little working functionality, however. Even the

1

basic search function for finding data by user ID did not work properly. The project was to either
fix or replace this web app, first getting the basic search function to work, then adding as much
functionality as possible within the remaining time. Due to the confusing design of the previous
app, the team decided to replace it.

2 Requirements

2.1 Functional Requirements

• Search for reports by any combination of variables, including user ID, date range, duration,
and any other parameter stored in the database

• View and download graphs of collected data for a single report

• View numerical statistics for a single report

• View and download graphs of a single user’s data over time for five key metrics: sleep quality,
blood oxygen saturation, pulse rate, motion, and snoring

• Delete reports from the database

• View platform and version statistics for the mobile app

2.2 Non-Functional Requirements

• Written in JavaScript using Node.js, Express.js, and various Node.js libraries

• Pug (formerly known as Jade) was used as the templating engine. It allows a more concise
method for writing HTML, as well as adding support for inline JavaScript.

• Hosted on an AWS server running Ubuntu 16.04 LTS

• Uses an API to interface with a PostgreSQL database, which is hosted on another AWS server

• Source code is hosted on a third AWS server using GitLab

3 System Architecture

The overall system architecture is shown in Figure 2. The mobile app and the EverSleep product,
end users sleep data is collected and entered into the database. The Node.js application uses an
API to communicate with the database. EverSleep employees can then use the Node.js application
to retrieve data in a human-readable format.

2

Figure 2: The general architecture of the system

The design of the API is outlined in Table 1. There are four general groups of API actions:
records, trends, users, and system. Notice that there is no POST method for records. This is
because this tool is only for viewing data collected by the mobile app, not for modifying existing
entries or adding new ones.

Action Method Path

Retrieve list of records GET /api/records

Retrieve individual record info GET /api/records/:record id

Delete individual record DELETE /api/records/:record id

Retrieve trend data for variable GET /api/trends

Retrieve list of users GET /api/users

Add user to login POST /api/users/add

Delete user from login DELETE /api/users/:username

Retrieve platform data GET /api/system/platform

Retrieve version data GET /api/system/version

Table 1: API calls used by the app

3

4 Technical Design

4.1 Access Control

Access control is handled using three Node.js libraries: Passport.js, bcrypt.js, and Sequelize. Figure
3 shows how these components interact with each other. After the Node.js server receives the
users login credentials, it passes them into a Passport.js authentication function. Passport.js uses
strategies to define the authentication functions. The team used the local strategy provided by
Passport.js, since the usernames and hashed passwords are stored in the same database as the sleep
reports. After receiving the user credentials, Passport.js uses Sequelize to query the PostgreSQL
database and retrieve the hashed password that matches the entered username. It then passes the
entered password and the saved password hash into a bcrypt.js function which compares them.
The authentication function then returns a boolean, indicating to Node.js whether the user was
authenticated.

Figure 3: The general design of the access control system

4.2 Overall Design

The UML diagram in Figure 4 shows the overall design of the app. In order to access the database,
the request is sent through an api, where the request is handled. Most of the Jade files use a script
in order to change the site with interaction, whether that be adding a filter, or changing a date
range. Security for the site uses Passport.js and bcrypt.js to ensure that the user has the proper
credentials before allowing them to access the site or API.

4

Figure 4: UML diagram showing the design of the app

There are five primary routes used by the app: home, records, trends, users, and system.
The pages the routes correspond to are described briefly here. Screenshots and more detailed
descriptions can be found in the instructional guide located in the Appendix.

The home page displays some general information about how many people are using the product,
showing the new users, returning users, and total users for a given interval. This interval defaults
to the previous night, but can be changed using date fields on the page.

The records page, by default, lists the 15 most recent reports. The user can add filters to search
by any parameters stored in the database. The records route also has a sub-route which allows
viewing information for a single report. This page displays all of the useful data collected for a
single user during a single night. Much of this data is displayed graphically.

The trends page shows graphical representations of sleep data for all reports recorded by one
user.

The users page allows management of the web apps user accounts. Currently, it allows adding
and removing users.

The system page shows charts displaying data about usage of the mobile app. One chart shows
how many users are using each platform, the other shows the same information about the mobile
app version.

5

5 Design Decisions

• Node.js, Express.js, and Pug used because they are standard technologies for developing web
apps. As a result, they all have good documentation and support, which was useful because
only one of the four team members had prior experience with web development.

• Passport.js was used to handle user authentication because it is the standard library to use
for that purpose.

• bcrypt.js was used for hashing passwords because it was used in the previous web app. Using
the same hashing algorithm allowed the team to avoid resetting all the existing passwords.

• Sequelize and pg-promise were used to interface with the database. Two different libraries
were used for this task because Sequelize uses a model system which the team found more
useful for querying user information, whereas pg-promise uses a more flexible promise system,
which the team found to be better for the dynamic queries used for searching reports

• Chart.js was used for rendering graphs because it is open-source, well-documented, and easy
to use

• An API system is used to interface with the database because it will simplify updating the
app if the database system is ever changed

6 Results

The goal of the project with EverSleep was to remake their dashboard website so that employees
working at EverSleep could easily find user information to help when customers contact them about
their sleep results. Overall, this goal was accomplished.

There was one major feature that the team did not have time to implement: trends for multiple
users based on filters like age, location, and habits. This was not a feature required by the client;
it was one of the low-priority requests.

The team tested the app on both Firefox and Chrome. In addition to verifying that all pages
functioned, this testing included attempting to bypass the user authentication and submitting
nonsensical queries. A prototype was delivered to the client (in the form of being deployed to
AWS) for testing as soon as user authentication was working properly. Since that time, the version
on AWS has been updated whenever new features were working on the testing environment. In
this way, it has undergone continuous acceptance testing.

In order to ensure usability with future people working with the site, an information guide was
made to assist with navigation and explain all the features.

Future work for this product could include adding the trends that allow for multiple users’ data
to be plotted, as well as writing unit and integration tests.

There were many lessons learned with this project, with statements querying the database
for the list of records, it was found to be much faster to only query what was needed instead of
everything. Our example of this was that our initial query did SELECT * and for asking more more
than 40 results, it would take over 10 seconds for the query to return. We found that if instead
we just did select id, it would greatly speed up query times to the point where we could load the
entire databases ids.

7 Appendix - Usage Guide

6

Index:

1. Home
2. Report List
3. Filters
4. Record Page
5. Trends
6. System Info
7. Users

 Home Page​ ​Back to index

The home page is designed to show the user quick information about report volume.
The default is from the previous day to the beginning of the current day.

 Report List​ ​Back to index

 Filter​ ​Back to index

 Record Page​ ​Back to index

The individual record page is a way to quickly view and download necessary files for a
specific record

Trends​ ​Back to index

The trends page allows a user to gather all of a single customer’s reports. It contains
various charts to contain generalized data for the user over time, as the customer will
see it in their app.

System​ ​Back to index

Users ​Back to index

The users page shows all the users that are in the database. It also allows someone to delete
Other users and create new users if wanted.

