/)
COMCAST

Sessionizing Video-Player Data
Stephen Kistler, Joel Walker, Sarah McCabe & Adam Nelson
June 19, 2018

Contents

1

2

Introduction

Requirements

2.1 Non-Functional Requirements
2.2 Functional Requirements

System Architecture

Technical Design

Decisions

5.1 Language and Libraries

5.2 Software
5.3 Driver

Results

6.1 Unimplemented Features
6.2 Performance Testing
6.3 Summary of Testing Lo
6.4 Future Work/Extensions L

6.5 Lessons Learned

Appendix

= W

10
10

10
10
11
11
12
12

14

1 Introduction

Comcast Corporation is a global telecommunications conglomerate and one of the
largest and most prominent broadcasting and cable television companies in the
world. Comcast is also the largest provider of cable internet access in the United
States with over 25 million high-speed internet customers as of 2017.

In their online streaming solution, Xfinity On Demand, consumers can watch
movies and TV shows in video players. Each time these players are accessed on an
individual device, a new “session” is started. Throughout the session, data is sent
back to Comcast regarding the health and lifespan of the player. This includes bit
rate changes, frame rate changes, error messages and failures, stream consistency
and duration, startup latencies, and geographical location. These AnalyticsFvents
are analyzed to continually eliminate potential errors, create statistics, and forward
billing information on to other carriers and companies.

At any given time, Comcast is receiving AnalyticsFvents from tens of thousands of
devices across the US. Clearly, this is an immense amount of data which needs to
be ordered in some way if it is to be useful. The most relevant way to group the
data is by the session from which it was created. This process would effectively give
Comcast the ability to “replay” a user session.

The task assigned to the CSM field session team was to develop an application
which takes in large amounts of AnalyticsEvents and outputs grouped sessions or
PlaybackSessionFvents. Ideally, Comcast would use this application to more
effectively group and analyze sessions in real-time; however, the amount of data
received per day is greater than what can currently be processed. In order to
prevent data loss, AnalyticsEvents are stored in Amazon S3 buckets, which allows
data to be processed any time after it has been received. So, our application
utilizes this “at rest” data as input and implement a solution to more efficiently
“sessionize” player data.

2 Requirements

The definition of done for the project is to produce an Apache Spark application
written in Scala that reads AnalyticsEvents from an Apache Parquet file, groups
the AnalyticsFvents by the session from which they were created, transforms the
grouped data into PlaybackSessionFvents, and writes the PlaybackSessionFEvents to
another Parquet file. The non-functional requirements listed below show the
different software tools needed to fulfill the technical design. The functional
requirements break down the definition of done into specific tasks necessary for
completion of the application.

2.1

2.2

Non-Functional Requirements

Apache Spark application
— Unified analytics engine for large-scale data processing
Written in Scala
— Combined functional and object-oriented language
Utilizes Apache Parquet for data storage
— Column-oriented; optimized for compression and scanning efficiency
Developed using the IntelliJ IDE
Github for version control and stakeholder accessibility

Use Trello for backlog and project tracking

Functional Requirements
Read in and process large Parquet files containing multiple hours worth of
player events, which are called AnalyticsEvents.

Group AnalyticsEvents by session information. Sessions are identifiable by the
session field in an AnalyticsEvent. The session field is a struct that contains
two values: the pluginSessionld (PSI) and the playbackId (PBI). A unique
combination of these two subfields indicates a single session.

Gather all other necessary information from the grouped AnalyticsEvents to
fully populate the PlaybackSessionEvent schema. This includes:

— header - contains timestamp and universally unique ID (UUID) of the
event

— partner and partnerld
— startTime

— eventType

— completionStatus

— sessionDuration

— device

— customerAccount

— application

— plugin
— asset

e Create a map of all the AnalyticsEvents of a single session.
— Key-value-pairs are the event UUID and the event itself

e Order all necessary information such that it fits the PlaybackSessionEvent
schema

o Write all produced PlaybackSessionEvents to an output Parquet file

e Runtime of application must be, at a maximum, half the amount of data
processed

— i.e. two hours worth of AnalyticsEvents must be processed in, at most,
an hour

e Test cases to validate output data-frame of PlaybackSessionFEvents,
specifically the map of all events from a single session

3 System Architecture

The Figures below illustrate the architecture and system design of the
sessionization application. Figure 1 represents the flow of data, beginning with the
creation of AnalyticsFvents and ending with storage of PlaybackSessionFEvents.

IP Video Data Producers Data Collection and Storage

Analytics
~ Events

Sorted Data in Parquet File

iy . CSM Replayer
Ig\ﬁim'ii“ .%W Project
[- ject

O
O

Figure 1: Data Flow

The IP Video Data Producers represent consumers accessing an Xfinity On
Demand video player on their phone, laptop, or other portable device. As
consumers watch videos, the player continuously creates AnalyticsFvents and sends
them back to Comcast. Comcast then stores the events in Amazon S3 buckets.
Several hours worth of this data was retrieved at the beginning of the project and
stored in Parquet files to be used as input for the sessionization application. After
processing, the newly created PlaybackSessionEvents are again stored in Parquet
files to be used by Comcast.

Figure 2 represents the architecture of Apache Spark, as it is the main driver for
our application. Because we are working with big data, a single machine cannot
provide the necessary processing power to make the application efficient. To
account for this, Spark transfers partitioned data to multiple machines or servers,
called worker nodes, and executes the same task in parallel. The worker nodes are
effectively sent individual tasks by the cluster manager, and, once the task is
completed, send them back to the manager. Thus, the cluster manager acts as the
interface between the driver and the worker nodes.

Worker

P ——

o Kot
SparkContext Cluster Manager |<@— m
)

Worker

Figure 2: Spark Data Distribution

In the context of our application, Spark is told to partition AnalyticsEvents based
on their session. This means that each worker node is processing and subsequently
returning data from a single session, allowing for an approximately even
distribution of work between executors. With roughly the same amount of data
being processed on each node, and each node producing a completed output, the
application achieves the most efficient runtime possible.

4 Technical Design

The most technically interesting aspect of our application is the function that
groups AnalyticsEvents by session and gathers all the necessary information to
populate PlaybackSessionFEvents. The full schemas for both events are shown in

Figures 3 and 4.

Figure 4: PlaybackSessionEvent Full Schema

AnalyticsEvent Schema
Header Event
struct struct
timestamp name performance
Root uuid clientTimestamp bitRateChanged
hostname clientPostTimestamp frameRateChanged
Header money clientGeneratedTimestamp playStateChanged
Partner serverRecievedTimestamp adProgress
ganqer ID xDateTimestamp fragmentWarning
B0 plugininstantialized error
Device L Session heartbeat eas
Application struct openingMedia scrubStarted
Plugin pluginSessionld (PSI) mediaOpened trickPlay
Event playbackSessionld (PBI) playbackStarted scrubEnded
Asset mediaFailed bufferEvent
medialnfo downloadEvent
Figure 3: AnalyticsFEvent Full Schema
PlaybackSessionEvent Schema
Root Header Events
’7 struct Map (key: event uuid, value: event)
Header timestamp name bitRateChanged
Partner uuid clientTimestamp frameRateChanged
Partner ID hostname clientPostTimestamp playStateChanged
Session money clientGeneratedTimestamp adProgress
Start Time serverRecievedTimestamp fragmentWarning
Event Type plugininstantialized error
Completion Status B heartbeat eas
Session Duration Session openingMedia scrubStarted
Device strugt . mediaOpened trickPlay
Customer Account plungessmn_ld {PSl) playbackStarted scrubEnded
Application playbackSessionld (PBI) mediaFailed bufferEvent
Plugin medialnfo downloadEvent
Asset performance
Events —— Customer Account
struct
billingld
xbold
accountType

Much of the information contained in the AnalyticsEvent schema is also present in
the PlaybackSessionFvent schema; however, there are several key fields that need a
more in-depth explanation. The most important field is session. As previously
stated, this is the field on which AnalyticsEvents are grouped. A unique
combination of both PSI and PBI is what indicates an individual session, so both
are taken into account in the grouping function.

The second most important field is event. As seen in the schemas, this field
contains all the information regarding the health of the player. Though the event
field has many subfields, each AnalyticsEvent only has one or a few of these
subfields populated based on what kind of event it is. If the AnalyticsEvent is a
heartbeat, it will only have the heartbeat subfield populated; if it is a frame rate
change, it will only have the frameRateChanged subfield populated. When grouped,
all the event information from every AnalyticsFEvents in that session is collected in
a map, and this is what populates the events field in the PlaybackSessionFEvent.

Another significant field is the header. In an AnalyticsEvent, this struct contains
the timestamp of the event (when the event was created), the UUID of the event,
and a couple other less important subfields. Whenever an AnalyticsFvent with a
new combination of PSI/PBI is received, this indicates that a new session has been
started. So, the timestamp and the rest of the header information from the very
first AnalyticsFEvent is used as the header for the corresponding
PlaybackSessionFEvent.

Similarly, the startTime and sessionDuration fields in the PlaybackSessionEvent are
populated using the timestamp information from the AnalyticsFEvent headers.

start Time is the timestamp taken from the very first event, and sessionDuration is
calculated by subtracting the timestamp of the first event from the timestamp of
the last event.

Additionally, as deemed necessary by Comcast for our application, the eventType,
completionStatus, and customerAccount fields are created and, for the most part,
set as constant values for all PlaybackSessionFvents.

Aside from those listed above, all other fields are copied directly from the first
AnalyticsFEvent to its PlaybackSessionFEvent. The aggregation of all fields in the
grouping function can be seen in Figure 5 below.

getGroupDF(inputDF: sparkSession: SparkSession):
sparkSession.implicits._

inputDF

.orderBy(

.select(

.groupBy(

.agg(
first().as(
first().as(
first().as(
min().as(
tit().as(
Lit().as(
(max() - min(
first().as()
first().as(
first().as()
first().as()
collect_list(map(

).withColumn(

struct(
lit(Random.alphanumeric.take(17).mkString).as(

.as()

Lit().as(

Figure 5: Grouping Function Code Snippet

5 Decisions

The following sections describe the main technical design decisions of the
application with a rationale for each. In general, the team was focused on finding
the best way to implement functional code while matching Comcast’s provided
event schemas.

5.1 Language and Libraries

To reiterate, the primary language used was Scala, which is a combined functional
and object-oriented programming language. Scala was implemented in combination
with Apache Spark to create a productive and robust system to analyze and
process big data. Spark’s ability to partition data, along with its support libraries
for SQL and data-frames, allows data to be processed on multiple executor nodes
across multiple servers. This functionality is crucial for the large data files we used,
as a single system cannot handle the vast amount of data. As aforementioned, each
executor processes AnalyticsFvents from a single session. This distributes the work
as evenly as possible and minimizes the overall runtime. Additionally, Comcast’s
real-time data processing program is written in Scala and Spark, so our
sessionization project followed suit so it can be integrable.

The storage format for the application data is Apache Parquet, which is a
column-oriented database management system. This format was chosen for its
excellence in compression and scanning efficiency. Additionally, Spark has reliable
support for both reading from and writing to Parquet files.

5.2 Software

The Comecast team guiding this project uses IntelliJ as their primary IDE for Scala
development, so we decided to use it instead of Eclipse. Though we were all already
familiar with Eclipse, we concluded it would be better to learn IntelliJ as we would
likely use it in the future, and it allowed us to standardize our development
environment with Comcast’s.

A private GitHub repository was used for version control. This allowed for seamless
code sharing amongst the team and instant delivery to Comcast.

5.3 Driver

As previously stated, Spark’s ability to process data on multiple nodes is
paramount if the application is to be efficient and viable for Comcast. In
accordance with this end, the code could not invoke functions that collect data onto
the local machine. As seen (or perhaps not seen) in Figure 5 in Technical Design,
the code is very limited in the built-in functionality it uses.

6 Results

6.1 Unimplemented Features

Our team did not leave any required features unimplemented, and we fulfilled
Comcast’s definition of done. Though all required features were implemented, there
are a couple aspects that do not work exactly as intended.

First, our team struggled to accurately generate the map of event UUIDs to events
in the PlaybackSessionEvent schema. Instead of a single map of key-value-pairs, our
code generates an array of maps with a single key-value-pair each. Additionally,
one of the subfields in the customerAccount field in the PlaybackSessionFvent
schema needed to be a randomly generated string, different for each session. While
our code can generate a random string and populate the subfield for every session,
it is not unique for every session. Both of these situations have been communicated
with and acknowledged by Comcast.

10

6.2 Performance Testing

Below is a list of the passing test cases implemented as part of the application to
ensure that the data manipulation is accurate.

e Parquet File Test

— This test reads in a Parquet file and writes to a new one. This verifies
that our code for reading and writing data-frames to Parquet files works

properly.
e Sessions Created Equals Sessions Expected

— The purpose of this test is to verify that the number of
PlaybackSessionEvents in the output data-frame matches the number of
unique PSI/PBI combinations from the input data-frame.

e Events Per Map

— This test ensures that every AnalyticsEvent in the input data-frame is
uniquely mapped to a PlaybackSessionEvent and that no events are lost.

e Processing Factor

— This test verifies that the data for each session is being processed in a
time less than half the duration of the session.

6.3 Summary of Testing

Figure 6 below displays the performance results of processing runtime. The
application appears to exhibit an approximately logarithmic complexity; however,
after 100,000 events, the run time appears to increase at a linear rate. Though it is
difficult to determine the exact complexity of the application without knowing the
complexity of specific Spark functions, it is estimated, from Figure 6, to be between
O(logn) and O(n). These tests were performed on single machines, so performance
would improve if the application was ran on a dedicated cluster of machines. A
table with specific runtimes can be found in Appendix A.

11

Events vs. Processing Time
500

=
R

400 ! B

200 4

Processing Time (seconds)

0 100000 200000 300000 400000

Number of Events

Figure 6: Processing Time

6.4 Future Work/Extensions

One idea for extending the application would be to create an HTML diagnostics
page. This would be a document generated per some interval of time during
processing, containing a high-level overview of the data for a human to review.
This would include information such as the frequency of events, average stream
duration, average frame rate, frequency of stream failures, the overall number of
events processed, and average number of events per session.

Due to our limited access to Comcast’s codebase and Comcast’s direction
throughout this project, our final application is more functional rather than
object-oriented. In context, this means that instead of reading in the input
data-frame, creating objects for each AnalyticsFEvent, and then creating
PlaybackSessionEvent objects, we simply transform the AnalyticsEvents into
PlaybackSessionEvents. A future extension, if we were given access to certain class
definitions, would be a more object-oriented approach, allowing for more direct
manipulation of data but possibly a longer runtime.

6.5 Lessons Learned

Scala is similar to Java in that it can be object-oriented, but it is also unique as it
is functional language. The object-oriented nature made learning the basic syntax

12

fairly easy, but implementation of Spark functionality was significantly more
difficult, taking a lengthy amount of time to Figure out. This will likely be the case
in the future when developing with new frameworks, and we will need to allocate a
good chunk of time to account for learning curves.

Spark is an extremely powerful tool for processing big data, and since it can be
written in multiple languages, it is quite versatile. We wrote our application in
Scala to be compatible with Comcast’s systems, but writing it in Python, a
language with which we have prior experience, may have allowed for faster
development and further functionality. On the other hand, having prior experience
with SQL made working with data-frames and Spark’s version of SQL easier, as we
could visualize and more fully understand how we were manipulating data. So,
efficient development is best achieved by finding a balance between learning new
functionality and drawing from prior experience.

13

7 Appendix

Number of Events 100 1000 5000 10000 50000 100000 250000 480330
Trial 1 Time (s) 34.685 74.476 107.424 140.214 253.478 394,239 419.653 547.01
Trial 2 Time (s) 31.646 74.976 110.34 131.566 284241 402.787 457.564 665.682
Trial 3 Time (s) 34178 75.195 108.11 151.537 350.208 410.623 411.361 476.096
Trial 4 Time (s) 36.979 84.617 108.536 166.994 278.276 400.677 567.917 479.226

Average (s) 34.3720 77.3160 108.6025 147.5778 291.5503 402.0815 464.1238 542.0035

Average/Event (s) 0.3437 0.0773 0.0217 0.0148 0.0058 0.0040 0.0019 0.0011

Figure A: Process Performance Data

14

