

Career Day Application:
Final Report

Byron Jones
Tracy Karol

Erica Manzer
Anna Nienhaus
Joseph Zeng

Colorado School of Mines

Computer Science Field Session 2018
Advisor: Dr. Jeffrey Paone

Introduction
During this field session, we worked with the Colorado School of Mines Career Center
and the Colorado School of Mines IT department--Computing, Communications, and
Information Technology (CCIT)--to develop a mobile-friendly web application. This web
application was designed for use by students in order to help them prepare for the
Mines Career Day, and to help them navigate their way through Career Fair. Currently,
the Career Center hands out program guide booklets including information about
companies that will be attending Career Day. This app digitalizes the information in this
book.

The website has two main functions: allow students to search for companies they may
wish to talk to at Career Fair in the Companies tab and find where these companies’
booths will be in the Maps tab. The Maps tab will include different map PDFs for each
room at the Career Fair.

On the Companies page, students are able to view the list of all companies who will be
present at Career Fair. They may then filter this list of companies by what majors and
degree level or year they are hiring. Students may also use the search bar to look for a
specific company.

Screenshots of the different pages on the site have been included in the appendix so
that the reader may see how the pages discussed appear online.

Requirements
At the beginning of the project session, we spoke to our client about what they expected
us to design during the six week field session period. Here we describe the vision and
expectations for the project.

High-Level Vision

In planning this project, each stage was defined in different “phases.” Phase 1 entailed
any features or functionality that should be implemented in the 6 weeks of field session
that must be complete in order to meet our Definition of Done. While we did not work on
Phase 2 and beyond, it was important that we recognized these features to come so
that we could design the website to be able to incorporate these functionalities later.

Upon the completion of Phase 1, users can see a list of all companies at the Career
Fair. This list has a sort feature that can narrow by major and year. On the companies
list, each entry has a link to that company’s page. This holds information such as the
company’s booth number, website, and description. In addition, users can view PDF
maps of the booths at the Career Fair on the Maps page. The booth numbers on the
companies list and the Company pages are links to the PDF map that can be used to
find that company’s location at the fair. The company information is automatically
updated from a web service connecting to the Career Center’s SQL database.

Features that will be completed in Phase 2 and beyond may include but are not limited
to embedded advertisements, company videos added to individual company pages, an
interactive booth map where a booth on the map links to the page of the company that
will have that booth, the ability to filter companies by industry, and a way to gather
statistical data of user interactions.

Functional Requirements

The mobile-friendly website must allow users to search for and view information of the
companies who will be attending Career Day. Users should be able to view all the
companies that will be present and which majors and years they are hiring. Additionally,
each company should have its own page showing their booth location, website link, and
brief description. Finally, the booth maps should be available to view on the website.
The website will have the following pages:

● Home Page (Figure A1) - The home page includes information about Career Day
(date and time, locations, etc.) as well as links to other Mines websites that
contain career information. These links were provided from the client.

● Company List Page ​(Companies Page, Figure A2) - This page includes a list of
companies and their booth numbers. It allows users to search companies by
whom they are hiring (year and major) and by industry. Industry searching was
not implemented in Phase 1, but a placeholder in the code allows for this to be
added later.

● Individual Company Pages (Company Page, Figure A3) - This page includes
the company name, booth number (acts as a link to the booth map page), a link
to the company’s website, and a brief description of the company. It also includes
a table indicating which majors the company is hiring and which years they are
hiring for each major.

● Booth Map Page (Figure A4) - This page contains links to each of the different
booth maps, which are hosted on the individual map pages.

● Individual Map Pages ​(Figure A5) ​- This page displays the map of a particular
location.

The app communicates with the CCIT SQL database that currently exists for Career
Day. The database is controlled and updated by administrators at CCIT and our app
receives this information for its displays.

Non-Functional Requirements

● Visual Studio Community for IDE
● ASP.NET application framework
● C# used for back-end logic
● SQL database (preexisting)
● WCF REST web service for communication with SQL database (provided by

CCIT)
● Bootstrap library for styling
● Razor markup language used for views

System Architecture
Here we describe the architecture of our project, both in the front end and back end. We
also describe how all involved entities interact with each other to make the program run.

Technical Description

We developed the project as an ASP.NET application using the Visual Studio
Community IDE and adhered to the Model-View-Controller (MVC) architecture. This
means we separated our code into three components: the Model, which handles
everything involving data; the View, which handles everything involving user interface;
and the Controller, which handles the communication between the two. Refer to Figure
1 for a visual representation of the MVC architecture. A template for this type of
application was provided through a package included in Visual Studio and it served as
our starting point for the website. The views were coded in the markup language Razor
provided in the template and Bootstrap was used for styling. The controller and model
logic were written in C#.

Figure 2 displays interactions and relationships between different entities involved with
the project. In Figure 2, we modeled the relationships between our app, the web server
API, CSM’s web server, and the users. The app will be hosted on the Mines server and
will receive views from the web server API. Our app sends requests to receive data
from the database with the web service API acting as a intermediary.

Figure 1: ​A model of how our application fits into the MVC architecture.

Figure 2:​ A model of the different interactions between project entities.

User Interface

Our user interface consists of various, easy-to-navigate pages. A list of pages and
features and their functionalities are given below:

● Navigation Bar ​- The navigation bar appears at the top of each screen and
allows users to navigate between pages. The features of this bar are as follows:

○ Home button - returns the user to the home screen
○ Company List button - takes the user to the company list page
○ Booth Maps button - sends the user to the page that contains the booth

maps
● Home Page ​(Figure A1) - The home page is the page the user first sees upon

authentication and will give them information about Career Day.
● Company List Page (Figure A2) - Upon arriving at this page, all companies are

displayed with their booth number. Each company name is a link that the user
can follow to the individual company page. The headers on the table have the
functionality to sort alphabetically by company or by booth number. A search bar
allows users to search for specific companies. Dropdown menus allow the user
to filter companies by the following criteria.

○ Major - Shows only companies that are looking to hire the specified major.
○ Degree/Year - Shows only companies that are looking to hire students of

the given degree or year.
○ Industry - Will show only companies of the specified industry. This feature

is not part of Phase 1, but there is a placeholder in the code for when this
can be implemented.

● Company Pages (Figure A3) - Each company has its own page displaying the
company name, booth number, description, and website link, as well as a table
describing who they’re hiring. The booth number also links to the map containing
that booth.

● Booth Map Page ​(Figure A4) - This page has links that the user can use to go to
individual map pages.

● Individual Map Pages (Figure A5) - This page allows the user to view a specific
map.

Technical Design

Framework
Using the ASP.NET framework for this application was a new experience for everyone
on the team. It is an open-source server-side web application framework that handles all
of the background communication between the code and the browser. Visual Studio has
ASP.NET packages that set up a nice template website when a project is first created.
This template comes equipped with Bootstrap styled pages and a file structure that is
based on MVC architecture. We were given three .cshtml files under the Views directory
and a controller file written in C# with the template. We were able to edit the existing
cshtml files and add more so that we had one corresponding to each of the pages for
our website and alternate cshtml files for mobile displays.

For all of our Controller logic, we utilized the HomeController.cs file from the template.
Our framework has a URL template in the format: ‘​{controller}/{action}?{id}​’. This
enables the functions in the specified controller file to be called and given arguments
through the URL. As an example, to bring up the Map page that corresponds to a
company’s booth number, the URL would look like this: ‘Home/Map?id=2554’ where the
company has an id of 2554 in the database. When this URL is received, the application
knows that it needs to respond to the browser by going into the HomeController file and
executing the Map function using the id for the argument.

The HomeController file has functions to render each page of our application. The
names of the functions correspond to the names of the .cshtml files in our Views
directory. The ASP.NET framework sets up a path so that when these functions return a
View, it simply looks in the Views directory and returns the View with the matching
name. Most of the pages require being given background information to know how to
build itself. One such page is the Companies page (see Figure 3); since there is a
filtering capability, there are many combinations of companies that are shown on the
page depending on the parameters that the user specifies. To handle this problem, the
function in the HomeController that brings up this page takes many arguments (Major,
Level, Search) and is able to narrow down the list of companies accordingly. The
function will make a call to the Model code to receive all of the companies in the
database, then it will pass it to a helper function called Filter that takes the filtering
parameters and returns a new list containing only the qualifying companies. This new
list is then handed to the View file and is displayed on the page.

Figure 3: ​Diagram displaying how the Companies page builds itself using filter variables. Arrows

represent steps, labeled 0-8. Dotted lines indicate that either one function or the other will be called, but
not both.

Getting the Data

In order to communicate with the Career Day database, we were provided a WCF web
service API from the CCIT department. The service was deployed on the CSM
webapps-test server and to integrate it with our application, we just needed to add calls
to it within our code. To do this, we used a servicemodel metadata utility tool to
auto-generate the service model code to be used with our program. This generated
code makes up the bulk of our Model. It is a client API consisting of a list of classes in
C# that know how to build themselves based on what is received from the database.
Within this file, there are four important classes called Company, WantsToMeetWith,
Major, and iCareerDayServiceClient (as shown in Figure 4). The
iCareerDayServiceClient class has three methods that are used in our application called
GetCompanyList() which returns all existing companies, GetCompanyById(int id) which
returns information about a specific company, and GetMajorList() which returns all
existing majors. These functions make calls to the web service and receive a JSON
string of data in response. These strings are then deserialized into their corresponding
objects, so that the HomeController receives the data as either Company objects or
Major objects.

In the HomeController file, whenever information from the database is needed, an
instance of iCareerDayServiceClient is instantiated, one of its three methods is called,
and then the client is closed. Following the example from the previous section, when the
Companies controller function needs to retrieve the list of companies from the database,
the client is opened and the GetCompanyList() method is called to receive the array of
Company objects. The auto-generated client API does all of the work involved with
converting the raw data into the objects we need, so this made it very easy for us to
integrate the web service with our application.

Any data needed for the website that may change but does not come from the web
service API is gathered from configuration files. These are JSON files that hold
information such as which PDFs to display and times and dates. The setup of the
classes built from the configuration files can be seen in the UML diagram in Figure 4.

Figure 4:​ UML diagram describing the classes used in the application.

Decisions
Throughout the course of the project, our team had to make several decisions on how
best to implement the web application. Our main goal when facing each of these
decisions was to make the application easy for CCIT to maintain and edit on their
existing system architecture. CCIT’s ability to maintain the web application was
facilitated by the team’s decisions of languages, to utilize an MVC architecture, how to
have the app communicate with the existing Career Day database, and how to setup
the configuration files.

Languages Used
The languages used for the website where C#, Razor (markup language), CSS, and
Bootstrap in an ASP.NET framework. We developed the project using Visual Studio
2017 Community. This IDE provided a template for the website upon creating the
project, which we were able to build off of. These languages and the IDE were selected
due to constraints on the servers the website will be deployed to. CCIT informed the
team which languages would be used at the start of the project. We had to meet CCIT’s
language requirements so they can easily maintain and deploy the site.

MVC Architecture
In setting up our code, we decided to use the MVC architecture. This was the structure
our client preferred we use. It was beneficial to organize the code this way because it
kept different components of the application separate. Thus, it allows for referring to
chunks of code in different places and helps maintain a “Don’t repeat yourself” or DRY
mentality within our code.

Database API
The web service API was provided to us by Bryan Siebuhr, the manager of application
systems at CCIT, because security measures restrict us in what data we can receive for
the application. Our application makes calls to this service within the controller file and
receives a list of objects containing information about companies attending Career Day.

Configuration Files

The client asked us to include configuration files in order to avoid hard-coding data that
will change from semester to semester. There were already configuration files in the
template code; however, we opted not to use them. These .config files contains a lot of
unnecessary information our client would have to look through in order to find the
correct place to edit. Because our client wished for the editing of the website to be as
easy as possible, the .config files would not be optimal for her.

Instead, we decided to include two JSON files to act as configuration files that only
included the settings specific to the client. One of these files controls information and
photos on the homepage while the other controls map PDFs that will be uploaded to the
website. Using JSON files works well for our purposes because only information that
our client will be editing are included, and it is well-labeled that it will be easy to
understand.

Results
The goal of this project was to create a web application for Career Day that would give
students easier access to the information found in the hard copy of the Career Day
program guide. This application pulls from the Career Day database in real time as the
page is loaded and it currently runs on Google Chrome, Microsoft Edge, and Firefox.
The website is also mobile friendly.

Performance Testing and Results
For this project, our client did not require any unit testing. While we did not do any unit
testing with our website, we did quite a bit of practical testing, as well as an alpha test
demo (described in the next section).

Our practical testing involved an in-depth exploration of the website each time we
implemented a new feature. This meant that each time we added a new functionality,
we would try it out from all angles, and click all links that could possibly be associated to
ensure that the addition of these features did not cause errors elsewhere. Most of the
time, we had multiple team members pull the new changes and investigate.

In addition to checking for anything that might yield an error message, we also
investigated all new features to ensure that they would work the way they were intended
to. For example, once the filter feature was added to our list of companies, we tested
this by applying some filters, then checking several companies that appeared to make
sure that they did indeed match the filter criteria. For further checking, we selected filter
criteria that we knew would bring up few results and looked to see if the resulting
companies list was as we expected.

Outside of testing specific features, many team members also took time to play around
on the website without looking for anything specific. We used the site in a way we
expected an end user may use it. Doing this, we found a few bugs that were then
corrected.

Alpha Testing and Results
During Week 3, we performed an Alpha test with the students from the Physics field
session. During this test, we demonstrated the alpha version of our website for these
students, explaining its features, and then allowed them to explore the site themselves

on their laptops or mobile phones. After this, 28 students filled out a survey to let us
know what they thought of the app.

In the first question, we asked the students to answer four questions on a scale of one
to five. The questions, listed in order, were: how likely are you to use this app in
planning for career day, how likely are you to use this app during the career fair, how
easy is it to navigate the site, and how aesthetically pleasing do you find the site? The
results from the 28 students who took the survey, shown in Figure 5, were quite good.
The first three questions scored over 3.75 on average, with the last question scoring just
above a three. This means that students find the app useful and easy to use, though
only averagely attractive.

Figure 5: ​Bar graph displaying survey results for the first four survey questions

In Questions 2 and 3, we asked if the filtering feature for the Companies page and the
ability to change results per page, respectively, were helpful. 92.86% of students said
yes to Question 2, and 75% to Question 3. This indicates that the features we added to
our site were practical and useful.

Questions 4 and 5 were open ended. We asked if there were additional filters that
students would like to see, and if they had other recommendations for the site. From
this, we found that several students would like the ability to filter companies by industry,

location, and what kind of job they are offering. While it is not currently possible to
implement these filters since the information required is not currently in the Career Day
database, it is something to consider for the future.

Overall, we received good feedback that indicated our app is on track to be useful for
the users. We also received several good suggestions for features to implement in the
future.

Features Not Implemented
At the beginning of the project, we discussed with our client the possibility of tracking
usage statistics on the site to see who is using the site, and what they are doing while
using it. However, this would have required using tracking cookies which is a privacy
issue as well as permission from CCIT. Since we never got word from CCIT on whether
or not this would be permissible, this feature was never implemented. However, this
feature could still possibly be implemented in future work.

Work for Later Phases
Currently, the web application does not filter companies based on industry or other
suggested criteria because there is no entry for this data in the Career Center’s
database. Once this data is added, then the app can query that information and store it
within the company objects. In addition, another entry’s addition to the database would
allow it to store the logo of each company, and then add the logo to the individual
company page. Another potential feature would be to make the booth maps interactive
so that if the user clicks on a booth, it takes them to the company home page.

Lessons Learned
● We originally had issues testing our application on mobile as there was no way

for us to host the website on a server without going through CCIT. However, we
were able to use developer tools in Google Chrome that allowed us to test the
the mobile version in a timely manner. By going to the Google Chrome menu and
selecting “More Tools,” then “Developer Tools,” we were able to access a page
that allowed us to switch to a mobile view. Using this, we did not have to
purchase an expensive emulator or rely on limited-time trials. We learned that
Google Chrome has additional tools that were extremely helpful for our project
and could be useful for future development projects.

● While pair programming was quite helpful, we also had success programming as
a group with the entire team working at one machine. When we ran into a large
or difficult problem while programming, we would connect one computer to a
projector so that all team members could see the working code and offer
suggestions. By doing this, we were able to efficiently solve problems with the
code and work through design issues. However, we would not recommend doing
this for an entire project, since it is more effective to divide up smaller problems
so that we could tackle more issues at once.

Appendix
This appendix includes screenshots of the website so that the reader may better
understand the site’s layout and what information is included on each page.

Figure A1: ​A view of the top portion of the home page. This is what the user would see upon navigating

to the website.

Figure A2: ​A view of the top portion of the Companies page. The user can search for companies using

the search bar and dropdowns at the top of the page. The page is accessed by clicking on the
“Companies” tab on the navigation bar.

Figure A3: ​A view of the top portion of an individual company page. This page can be located by clicking

on the company name on the Companies page.

Figure A4: ​A view of the Booth Maps page, accessed by clicking the “Map” tab on the navigation bar.
Each of the listed booth maps links to the individual map page. This view also includes a view of the
website footer, which includes links to other various Mines resources and is present on every page.

Figure A5: ​A view of the top of an individual map page. This page displays a PDF of a booth map. This

page is accessed from one of the links on the Booth Maps page.

