

IronDiggers Final Report

CSCI 370 Field Session

Summer 2018

Riley Miller

Madison Rogers

Emily Garnier

Satvik Saini

Advisor: Dr. Fisher

I. Introduction
The IronDiggers field session project was to create a web application for the Colorado

School of Mines strength program. This was part of a field session project in summer of 2017,
and some of the features developed during that time were intended to be carried forward to this
year’s project. The main goal of this application was paperless data tracking of weight lifting
information for athletes at Mines. This web application was also to allow for paperless
communication of workouts and the ability to track athlete progress over time. The way the
system works is that the strength coach will enter specific workout information for groups of
athletes, then that athlete will complete the workout and record the weights lifted. Eventually,
the athlete and coaches can look at improvements made. This application will also ease the
customization and consistency of the workouts because an athlete can easily access recent lifts
so they know how much weight they should be lifting on a specific day. This will be an
improvement over the current method of paper sheets to communicate workouts. The paper
sheets make it difficult to see athlete progress over time. Once deployed, the online system will
lessen the manual work of searching for sheets by the strength coach, as well as making
workout history more accessible to athletes.

II. Requirements
The IronDiggers field session team focused on two main functional requirements which

include: application rewrite and website improvements. Additional features being a schedule
feature and mobile alert system, that we did not get to this summer.

Application rewrite

The code from last year’s team did not meet the requirements of the client. The backend
of the code application needed to be structured differently in order to meet the requirement of
paperless data tracking set by the client. The two options being, either refactor the existing code
base, which would be rewriting practically the whole backend of the application and any
dependent parts of the front end, or start from scratch in a technology stack more familiar to the
team. It was decided to start from scratch and write the application in the MEAN stack for better
scalability and future uses.

Website improvements

One of the main goals for the website was to improve the user interface to be more
intuitive. The project team replicated the paper sheets that used to be used to track data, but in
a digital fashion. The athletes at Mines are accustomed to these weight lifting sheets, so having
the web application be very similar to those will make the transition easier for the student
athletes. The website would automatically generate the percentages of lifts to facilitate the
weight room experience. This means that when the workout says to squat 60% of max eight
times, each athlete will have their 60% of max automatically calculated for them, so they know

2

what they will be lifting before they go in the weight room. This not only customizes the
workouts, but helps student athletes stay consistent with their weight training.

Another piece of functionality is the ability for the strength coaches to track individual or
a team’s improvement over time. The project team will set up an interface where the coaches
can select an athlete and look at all of their lifts and progress over time. In addition, creating a
way to look at a specific team and look at performance history.

Time permitting: Online Weight Room Schedule
The client also asked for a way to display the current weight room schedule. Having this

schedule available online is a great improvement over the current method of just having a paper
schedule posted outside the weight room. With the scheduling information online, a student
athlete can easily look up hours of open lifting without having to make the trip to the weight
room with the potential of it being in use.

Time permitting: Mobile Alert System

The project team would add a mobile alert system that can be used to send updates to a
team about changes in timing for lifting or reminders to complete tasks associated with the
weight room. This makes it easier for the strength coach to communicate about changed
practice times or reminders. This is ideally done by having a section where the coach can enter
a message they wish to send to a specific team or individual and then the message as a text to
the athletes phone. Real time updates would useful in the case that the strength session needs
to be moved from 3:30 to 4 for example.

Non-functional requirements
High Level Requirements:

-Well documented and prepared for the transition to the application maintenance phase.
-improvements based off of work completed by the Summer 2017 team.

Hosting Requirements:
-The improvements held in a GitHub repository and will be deployed to the
irondiggers.mines.edu instance as the application gains functionality.
-Application configured with Shibboleth authentication through Multipass.

Development Requirements:
-Application rewritten in the MEAN stack to meet the clients requirements.
-Language standards and industry best practices followed while integrating new
technologies.

3

III. System Architecture
The main technical design issue the project team faced was the decision to restart the

web application using a different backend. The project team intended to build upon a project
started during the 2017 field session. After talking to the client, the project team looked at how
the backend would need to be restructured. The backend required significant redesign, and if
the project team were to restructure the database, much of the front end would no longer work.
The initial project framework (LAMP stack) worked from a short term perspective, but didn’t align
with the client’s long term goals. The framework wasn’t scalable in the way it was built, making it
useful for a very specific use case. Also, most of the programming was PHP making it
interconnected with the front end, which the team was planning to completely overhaul anyway.
Thus, the project team talked with Professor Painter - Wakefield about the options of major
modifications versus restarting and the decision was made to restart.

The old application used Laravel, Apache, and MySQL. The new application uses
Mongo, Express, Angular, and Node. Figure 1 shows the attributes the project team intends to
store in the new database. The project team set up a meeting with CPW and Dr. Romig to
discuss the potential logistic and privacy issues of restructuring the original project according
the the diagram below. The biggest issue identified by Dr. Romig was to make sure the ciphers
for Node.js agree with the ciphers the school servers use. The consensus is that the project
team should be able to develop the web app with the tools listed. Dr. Romig also gave the
project team a couple of tasks. One was to renew the certificate used to host the website on the
school servers. The other task is to run the code through vulnerability testing before it goes live.

4

Figure 1: Database Schemas - Each schema will be turned into a database collection in the
MongoDB.

Figure 2: Data Flow - This graphic shows how the data will flow from the MongoDB, to the
JavaScript controller files, to the API routes. The API routes are the endpoints that allow the
front-end of the application to communicate with the database.

5

Figure 3: Admin views. These are mock ups of what we wanted the front-end of the application
to look like. The User views and Coach views will be a simplified version of the Admin views

The project team is using Jira to map out the agile development process. Figure 4 shows
some of the epics and tasks the team has outlined. The epics are based off of the views shown
in figure 3 and the issues are the expected items to complete on each view.

Figure 4: Agile Development Process

6

IV. Technical Design
Create and Edit Workouts

One of the most important parts of this web application is the ability for an admin to dynamically
create a workout for athletes. This posed a difficult front end programming challenge. The team
decided to incorporate the FullCalendar javascript API with our code. This provided an interface
for the admin to click on a date on the calendar and have a modal displayed for them to create a
workout. The FullCalendar API took care of the scheduling aspect of the application but still left
us to develop the interface to create workouts.

The goal of the Create and Edit Workout interface was for it to be dynamic and simple to use for
the admin. Once a workout is made it will be displayed on the calendar and can be clicked on to
be edited. The edit workout modal is the same as the create workout modal (see figure 6) but it
is populated from the workout object connected to the event.

Figure 5: This figure is the admin’s interface to plan phases (groups of workouts) for a team or
group. The admin can select a team or group then click on a day on the calendar to bring up the
modal to create a workout for that day. The create workout modal can be seen in Figure 6.

7

Figure 6: This figure is of the admin modal to create workouts. This is a dynamic form-like
structure that allows the admin to add as many blocks, exercises, and sets as they desire. They
can also set a time and name for the workout.

The project team ran into many problems while developing this part of the application. The
dynamic nature of the UI was much more challenging than anticipated. In order to make the
application dynamic the team had to create new DOM elements and generate unique IDs for the
new elements. This created a big challenge when debugging the code. Looking back on our
design decisions, it would have been smarter to use a front-end framework that keeps track of
state, such as React, because our code became complicated and hard to follow because all of
the elements and their IDs are interconnected.

Athlete Progress Graphics

A main requirement from our client was the ability for an athlete to be able to view their lifting
progress as well as the adim or coach. The client said the athletes that use this application will
be using their cellular device to view the web page, so it must be mobily responsive. The
decision was made to utilize the d3.js graphics library due to its ability to create responsive
graphics and visualizations.

The athletes are able to view their lifting history for any exercise. A graph and table of all their
data for that exercise was created using d3.js. This allowed us to link the data to the different

8

elements on the graph, making the graph very interactive and dynamic for the user. The x-axis
of the graph has the date the exercise was done and the y-axis has the weight. As seen in the
figure, if multiple sets are done of the same exercise on the same day, they are shown on the
same day. This was the athlete can see their progress for the day as well as over multiple days.
Figure 7 shows a screenshot of an athletes lifting history for hang cleans.

It was a good design decision to use d3.js because it took care of all of the responsive design
for the SVG elements. All the team had to do was set the width and height of the element to
correspond to the device width and height.

Figure 7: This is the graphic generated using d3.js and the athletes individual lifting data. This is
the view on a laptop. Figure 8 shows the view from a mobile device.

9

Figure 8: This is the same data as Figure 7 but viewed on a mobile device.

Viewing Workouts

Similar to the athlete lifting history pages, the view workouts page for athletes needed to be
mobile friendly. Using bootstrap, it was relatively simple to create a structure that looks nice and
is easy to use on both mobile devices and laptops. Figure 9 and 10 show the view workout page
as a website viewed in a web browser and a mobile site.

Figure 9: This is the View Workouts page from a web browser on a laptop.

10

Figure 10: This is the View Workouts page viewed on a mobile device.

Deployment

Another key piece of the web application was deployment. This is a key step to all
software development, because otherwise no one can use the application created. Deployment
involved three key steps: obtaining a certificate, setting up authentication through Mines
Multipass, and hosting the application on the server.

The first step was obtaining a certificate. First, the project team had to collect metadata
about the server irondigger.mines.edu. The metadata acts to identify the service provider to the
identity provider. Mines uses Shibboleth as the identity provider to authenticate users by logging
on with Multipass. The metadata collected contained a public key and a private key. Both keys
were encrypted using RSA 2048. The private key is stored on the server and only root has
access to read the file. The public key is sent to the service provider. The school has to send
the metadata and public key to a web authentication service to get authenticated. Once this
happened, the project team received a certificate for the server.

At this point the Shibboleth authentication system could be set up. This is an important
step since the web app will be for Mines students only and their data should be secure.
Shibboleth was configured with Apache so when someone visits irondigger.mines.edu behind
the Mines firewall they are sent to a Multipass login page.

11

The project team used Apache as a proxy to handle the authentication piece, but then
used Passenger to connect through to the Express instance that hosts the web app. The web
app is stored locally on the server as a Github repository. This is convenient because any
changes can easily be put on the deployment server. Figure 9 shows how the authentication
connects through to the web app on the server.

Figure 9: Server set up to Authenticate a Mines user.

V. Decisions

Language Choice

The project team chose to use the MEAN stack to create the web application. MEAN
stands for Mongo, Express, Angular, and Node. Most of the project is written in Javascript. Pug
is the markup language used to display information of the front end.

Data Design

The information is stored in a Mongo database. This database is a good choice because
having a relational database looked very messy with many foreign keys and cross reference
table. The information is more easily accessed and understood in the Mongo schema.

12

Reuse/Library Choice

The project team is using Bootstrap to style much of the front end. This makes sense
because Bootstrap has many useful tools that are already well styled. This way the project team
avoids “reimplementing the wheel” as the team learned in the Tips talk.

The project utilized the github repository sahat/hackathon-starter which is a boilerplate
for Node.js web applications. The term boilerplate refers to applications or programs that are
intended to be used over and over again. This starter code is very generic, but acts as a good
starting point for the framework of the website.

Implementation Decisions

The project team is using Express as the web server, however to implement Multipass
login, the Express server has to be hidden behind an Apache authentication system. It is
possible to use Shibboleth, which is used to implement the Multipass login, on Express, but the
documentation at Mines is for Apache. After talking with Jack Rosenthal, who has used this
authentication on a web application before, the project team decided the best way to implement
Shibboleth is with Apache. Now the server will have Apache as the first point of contact with a
user. The Apache server will act as a proxy and then connect an authenticated user to the web
app locally hosted on the server.

Alternatives

The project team considered using React for some components of the web application.
After wrestling with React and not having much success, the project team found that some of
the functionality needed could be accomplished with Bootstrap. Also, the fact that none of the
team members have very much exposure to react led us to use Bootstrap.

VI. Results

The main goal of this project is paperless data tracking of weight lifting information for
athletes at Mines. This web application will also allow for digital communication of workouts and
the ability to track athlete progress over time. This project was a continuation of last year’s field
sesion project. They had considerable progress; however, the final product from last summer
used a LAMP stack which didn’t align with the project’s ultimate vision. Thus, one of the
functional requirements of our project was an application rewrite. A team decision was made to
convert to a MEAN stack for better long term outlook & scalability. Starting from scratch, the
backend was completely restructured. Along with the application rewrite, other functional
requirements include various website improvements. The improvements include making an

13

https://github.com/sahat/hackathon-starter

intuitive user interface designed to replicate the paper sheets the athletes are accustomed to.
Additionally, a view will be built out for coaches to track an individual’s or a team’s improvement
over time. Our application meets all of our clients’ functional requirements. However, due to time
constraints the online weight room schedule & mobile alert system did not make it into the final
product. These additional features can be built in future field sessions.

Things we learned

1. Installing the MEAN Stack was a difficult process for two of our group members. The
steps are extensive and everything needs to be aligned perfectly. This proved to be
slightly problematic on Windows & Macs.

2. After the somewhat troublesome installation of the MEAN stack, the benefits outweigh

the installation issues. The flexibility of the MEAN stack allowed our group to easily
develop, test, and introduce our app on the cloud. Also, the framework was intuitive and
only needed proficiency in JS. Whereas, the LAMP stack (previous framework for this
project) required expertise in MySQL, PHP & Javascript.

3. In order to host a website on the school server, the project team had to obtain a

certificate. This certificate was encrypted using RSA 2048. The project team generated a
public key and a private key. The public key was sent to CCIT and then they request a
certificate from a web authentication service. Then the certificate was downloaded onto
irondigger.mines.edu and the web page can be accessed at this address. This was a
cool application of an encryption technique learned in class at Mines.

4. The d3.js library for creating visualizations of data was incredibly useful and powerful.

Some of the many pros being this library is backwards compatible, thus easy to use with
many modern browsers today. Most importantly the d3.js is a versatile library for
manipulating data on the DOM. This was helpful in creating/editing workouts on the app.

5. Creating a dynamic form for the admin to create and edit workouts was much more

difficult than expected. The hardest part being taking a workout object and creating the
corresponding dom elements with the correct ids. Thus, in hindsight the project team
might have considered a different approach.

14

