.. ALDEBARAN

“\j-"z_"h._"j_?L. A

NAO Robot Demos for STEM Robotics Education
Colorado School of Mines

Client: Dr. Hao Zhang

Project Team: John Spielvogel
Austin Leo
Zach Smialek
Jacob Maerli

Contents

1.0 INtroduCtion.......eueieiii i 2
1.1 Product ViSiOoN. ... 2

2.0 ReQUIrEMEeNtS. ...t e 2
2.1 Functional Requirements..............oooeieieieiiiiiieiieiieiieiieiieeeeeneee, 2

2.2 Non-Functional Requirements..............ccoeeeiiieiieeieieiiiiiieene. 3

2.3 Potential RiSKS........ociuiiiiiiiiiie i 3

3.0 System Architecture...........cooeeiiiiiiiiiiii e 3
3.1 Core COMPONENtS. ...ttt 4
3.2SystemPackage...........couiuiuiii i 4

3.3 Useof Software Package..............ooooeueieiiieiniiiiiieiieiiiaeiennn.. 5

4.0 Technical DeSION. ...cuutieee ettt et et ettt et ieieieeneee, 5
4.1 Trivia Game.....eueeiei i 5

411 Database............cceuiiiiiiiiiii i 8
42RedBallTracker...........ouiuieieiiieiiiiieiieiie e 8
4.3Dance DeSigN.....cuueie i 10

5.0 DesigN DECISIONSue ettt 12
5.1 Language COMPariSON.cuuuueneninieieieieiiiieieeeiieeeeeeeeen 12

5.2 Framework CoOmpPariSON.ueieiiiie i, 12

6.0 RESUIS....coevuiieieiiii i 13
6.1 AccomplishmentS.........coeeeieeeieiiieieieiiiiie i 13

6.2 ShOrCOMINGS. ...ttt 13

6.3 Potential ForExpansion................ooeeieieiineiieiieiieieeiiieeenen 14
6.4Llessonslearned........cceeuiueniniiiiiiii e 14

6.5 CONCIUSION. ...eueieeeieitie it 16

1.0 Introduction

1.1 Product Vision

The objective for this project is to design and implement functional
software to interact with and demonstrate the capabilities of Aldebaran NAO
robots. The demonstrations will be targeted towards middle school and high
school students to promote STEM robotics education and to expose the general

public to the potentials of robotics.

http://www.robotlab.com/hs-fs/hub/314265/file-1052596453-jpg

The vision for this project was to incorporate games that the student could
play with the NAO robot. The goal of these games would be to help get the next
generation of brilliant minds excited for robotics and hopefully spark curiosity in at
least a few of them. The product was envisioned to include three demonstrations
which would demonstrate the capabilities of the NAO robot. One demonstration
was to exhibit the physical mobility. The second would show the potentials of
utilizing computer vision. The third would present a situation in which the player

and the robot would be involved in an active dialogue.

2.0 Project Requirements

2.1 Functional Requirements

The functional requirements for this project were divided into two sets of

deliverables. The first contained three demonstrations that the client requested to

be implemented including: a dance, tracking and kicking a red ball, and a
dialogue between a person and the robot. If time allowed, the second deliverable
requested was to interface the NAO robot with a Microsoft Kinect and port
existing code for a Simon Says game over to the NAO robot. In order to meet all

project specifications a video demonstrating the deliverables must be included.

2.2 Non-Functional Requirements

The non-functional requirements for this project entailed the upkeep of
good coding practices, utilizing either the Robot Operating System (ROS) or
Choregraphe, and developing the project in either Python or C++. In order to
produce satisfiable code, the code is to be completely documented and
implementations must be developed in an extensible and modifiable manner
which can be understood by future developers who may extend the

demonstrations.

2.3 Potential Project Risks

utmost care. NAO’s anatomy contains many joints and
motors controlling every component. If programming is
not done in small incremental steps the robot can easily
damage himself or others. There are several components
which prove to be much more fragile than the rest
including the back of NAO’s head as well as his fingers.
In order to safely work with NAO it is advised that there is |

at least one person spotting NAO while another executes

code or that NAO is suspended via a baby harness.

Figure 1: Broken Finger

3.0 System Architecture

3.1 Core Components

The main software running on and giving control over the NAO robot is
called “NAOqi”. The NAOgi Framework provides developers with the framework
needed to program the NAO robot. The framework is cross-language and
cross-platform allowing for the creation of distributable software applications.
This means that code developed for one Aldebaran robot will be executable on
another robot as the application programming interface (API) calls remain the
same.

In addition to utilizing the core software and framework provided with the
NAO robot, the system architecture includes the three core demonstrations in the
form of Python scripts developed by the team. These scripts are individually
packaged and consist of a single Python file each, excluding the Trivia Game

demonstration whose implementation is more complex.

3.2 System Package

The system package in this project is a server client model where the
robot is the server and the client is a computer that runs the scripts. Once the
script is run on the local machine, the broker allows communication across the
network and the ability to call the modules of the API (Figure 2). The system

package defines the local machine as the client and the server as the NAO robot.

Broker Modules Methods

insertDataf. .}

ALMemory getData(...)
raiseEvent(...)
-— walkTof...)
Metwork .
Access ALMotion anglelnterpolation...)
getAngle(...)

setintensity(...)

AlLeds

e e bt et et e e’

fade(...)

Figure 2: Interaction with NAOqi Services

3.3 Use of Software Package

This section is intended to aid the user running the scripts. The first things
that has to happen is the changing the IP of the robot. The robot network
interface is dynamic host configuration protocol (DHCP) so the IP will vary. The
IP is set either by getting passed into main or using the argparse, the port should
not have to change. The next step is to adding the NAOgqi directory to the
PYTHONPATH, see the install guide for more details. After the path has been
set and network setting has be alter the script can be ran through the terminal

and the robot will begin to execute the script.

4.0 Technical Design

4.1 Trivia Game

The trivia game is designed to be playable either solely by a single
individual or with a group of players and proves to be a fun way to increase your

knowledge. The game begins by having the NAO robot ask a couple of game

http://doc.aldebaran.com/2-1/dev/python/install_guide.html

initializing questions such as “How many players will be playing in this game?”.
Following initialization of the game, NAO begins iterating over the user defined
number of questions which are pulled at random from a database. NAO reads
the question out loud followed by the multiple choice options A, B, C, and D.
After a question is read and multiple choice options are given, NAO will iterate
over the players in the game asking each one for their final answer. Each player
is asked to confirm their answer, if unconfirmed, NAO will ask for a new answer
to the question. Once all players have supplied an answer to the active
question, NAO will say what the correct answer is for the current question. This
process is repeated until the user defined number of rounds has been reached.
At the end, NAO states every player’s score and determines the victor.

The trivia game is designed using three classes as well as the help of the
provided NAOgi API. The APl is utilized for the creation of the broker. The broker
is used to create the proxies that allows the developer to access specific services
such as the speech recognition engine. The Game class contains the majority of
the programs logic. The Game class’s constructor first executes a method which
greets the players and asks some game initializing questions such as “How many
rounds do you want your game to last?”. Within this method, a proxy is created to
the Animated Speech service, which NAO uses to speak out loud while providing
basic contextual based animations. After the game’s parameters have been set
(number of players and rounds), the next method uses the prebuilt database

(discussed below) to populate a localized list of questions with their respective

multiple choice options and answer. After the question bank is initialized, the
program enters the main game loop which it does not exit out of until the game
has reached the user defined number of rounds to play. Within a single iteration
of the game loop, the program randomly picks a question from the question bank.
Reads the question and its associated answers out loud and then loops over all
the players asking them for their answers. The program creates a proxy to the

Speech Recognition service which allows NAO to understand specific keywords

that have been added to his vocabulary list. Upon turning speech recognition on,
NAO’s eyes begin flickering blue (to notify the user it is listening). Once NAO
hears a word he/she understands the WordRecognized event is triggered and
the is_recognized() callback method executes. It is very important that speech
recognition is turned off immediately after user input has been accepted since
NAOQO’s own voice can trigger recognized words.

Due to the trivia game being one of the more complex demonstrations, it
would be best to abstract out functionality into multiple classes in order to
maintain readable, maintainable and extendable code. In addition to the Game
class, there is the BuildDatabase class and the ASRDialog class (Figure 3). The
BuildDatabase class handles the initialization of the database as well as
importing records into the database from a pre-existing CSV (comma delimited
file). The ASRDialog helper class sets up a proxy which provides access to the
speech recognition service. This class also provides helper functions which
provide an easy way to turn off and turn on the speech recognition service from

anywhere in the project.

Game

—-is_game_running: Boolean

+greet_players(): void
+set_up_players(): void
+initialize question bank(): veid
+play_game() : void
_random_question() : list

+get_confirmation (data:list): void
ption(): Int
r_retry(data:list): void

+evaluate points(data:list): void
fisicorrectianswar(data:list): boolean

+end_game () : void
+play cheer(): void Global Variables
<< Main >> +Game: Game
+Dialog: ASRDialog

#main(bot_ip:String,port:Int): void
marnibot, 1pEStringrp mt) 2 -asr: ALProxy = ALSpeechRecognition

wvocab: Array = String

— — =-memory: ALProxy = ALMemory

+is_recognized(str_val_name:String,value:list): void
+t n(): void

: void

+unsubscribe () : void

BuildDatabase

+ids_imported: list

I
|
I
I
I
I
I
I
I
I
|
-my_broker: ALBroker ‘\;L ASRDialog
|
|
h
1
1
1
1
1
1
1
1
1
1

t — — +build database(): void|- — — — — — — — — — — — — — — — — — — — 4
+count_records () : void
+drop_table(): wvoid
+query data(): list

Figure 3: UML of Trivia Game

4.1.1 Database

The database is a simple table with multiple choice answers,
questions, and the real answer (Figure 4). The decision to use a database
over reading in a comma delimited file for certain reasons. An excel/csv
file is used to store the data in order to make it easier for future developers
to easily add or update questions. In addition, a simple query of all the
required information is returned in an easily referenceable list. The
limitation of this design decision is that it is dependent on the structure of
the comma delimited file. The question, answer and multiple choice

answers needs to be in a specific cell in the file.

Answer
Questions . O Answers

4.2 Red Ball Tracker

Figure 4: Entity-Relationship Diagram

This demonstration illustrates the robot’s ability to track an object. The
robot defaults to using the upper camera which has trouble keeping objects in his
field of view when NAO approaches them. By setting the lower camera as the
active camera NAO had a more accurate alignment with the ball. A limitation of
the tracker is it requires the diameter of the red ball to be hard coded into the

script prior to execution.

Once the red ball is found in the environment, a vector is calculated
describing where the ball is in the real space and NAQO’s relative position to the
ball. The robot starts to move to the ball after a relative position is set with the
frame of reference to the torso the robot. Once the relative coordinate position is
satisfied the kick is started. The kick was programmed manually by adjusting
each joints/motors angle. After the kick has been completed, if the ball is still in
view the robot will go for another kick.

It is unclear from the documentation how the tracking is implemented in
the API. There are a few common ways object tracking can occur, common
target representation and localization algorithms. To popular flavors are
mean-shift tracking and contour tracking. Since the robot has the concept of what

a red ball looks like it mostly implements common target representation methods.

-

Tracker

+ IP: Str
+ PORT: INT

+ execute_kick{tracker, tts, kick_demo, behavior, posture, targetPos)

+ find_ball(tts, tracker, motionProxy, memoryProxy, targetName, video)

FE 3]
Saa + stiffness_on(proxy)

+1P: Str + scanning_motion(name, angle, fraction_max_speed, camera_id)

+ PORT: INT

+ main({string bot_ip, int port) : void

A

1 1
| |
1 v

i Kick

. + posture_proxy : ALProxy
M e e e s] + motion_proxy : ALProxy

+ kick({motion ALProxy, motion_proxy) : void

Global Variables

A

+ IP: Str
+PORT: INT
+ TOLERANCE: INT

Figure 5: UML Diagram of the Tracker demo

4.3 Dance Demonstration

The dance demonstration was animated with the use of Choregraphe.
Choregraphe is a powerful software tool that comes with NAO which can be used
to manage movement, speech, and sensory input. Within the software the user
creates ‘flow diagrams’ of boxes to control the behavior of the robot. There are
three basic types of boxes that are used: Python, Dialog, and Timeline. Python
boxes execute a script of Python code when their input signals are triggered
which control NAO through the NAOqi API. Dialog boxes define a set of rules by
which NAO can speak, recognize speech topics then send corresponding output
signals. Timeline boxes are used for managing actions which require specific
execution timing.

The dance demonstration is orchestrated using a Timeline box to the beat
of Harder, Better, Faster, Stronger by Daft Punk at a tempo of 128 beats per
minute. Within the box a motion timeline of numbered frames is displayed at the

top with a line of behaviors below as seen in Figure 6.

Motion £ & |o 1z 1130 1133 1140 1145 1170 119 1100 1108 1m um

>
. | E i]

Behavior layers [+]

@® dance %) H@”"Wilﬁ"'i = -

Timeline

Figure 6: Timeline

Along the motion line, joints of the robot can be stored which hold the position
angle values of each actuator (i.e. HeadPitch, LArmPitch, RAnkleRoll). The
timeline can be segmented into keyframes which can be used like individual
behavior boxes. When the timeline is executed a marker moves along the motion
and behavior lines at frames per second speed defined by the user. As the
marker approaches a stored pose NAO will automatically move its motors to

reach the pose when the marker hits it. When the marker reaches a new

10

keyframe a start signal is sent to the behavior box. The frames per second for
this demonstration was set to 32 which calculated out to 15 frames per beat
which allowed the motions to be saved synchronized with the song.

There are two methods to record and animate NAO’s joints. First, the
value of each actuator can be edited through Choregraphe by clicking the
actuator in the Robot View window which will bring up a model of the actuator
with a display of their values. The values may be modified using their

corresponding slider or a numeric value may be entered as seen in Figure 7.

Motion | Robot View £5]

r-=|:l:| -"J =:|:| Q (-

¢ Stiffen chain on/off

|| Mirroring

Figure 7: Motion Control

Second, Choregraphe has an Animation Mode which allows the user to release
the motors of the joints by touching NAO’s tactile sensors and move the joints.
Once the joints have been moved to their desired positions, they may be saved
in the timeline. The animations for the dance movements were all done

individually using a combination of these two methods.

11

5.0 Design Decisions
5.1 Language Comparison

The NAO robot can be programmed utilizing many different languages.

Specific languages prove to be better suited for the project (Table 1). Python was
chosen because of its ease of use and time efficiency (in comparison to C++’s
required overhead). Furthermore, the majority of NAO’s tutorials and

documentation are more prevalent for Python. Java does not meet the

requirements due to the unnecessary step of cross-compiling down to C++ or
Python.

Ease of Use anline . Time Efficiency Requ1re§ C_ross-
Documentation Compilation
Python 5 5 5 5
C++ 2 5 2 5
Java 5 1 4 0

1. Values range from 0 (worst) to 5 (best)

Table 1: Weighted comparison of potential languages

5.2 Framework Comparison

Programs written for the NAO robot can be executed using two different
frameworks: Choregraphe and the Robot Operating System (ROS) (Table 2).
ROS is a command-line based framework which provides no GUI and has a
much steeper learning curve than Choregraphe. Choregraphe is a GUI based
framework that allows new users to quickly jump into writing functionality for the
NAO robot. Although ROS is more versatile for programming a wider array of
robots, Choregraphe was used due to time constraints of the project. Another
reason Choregraphe was chosen was that it easily integrates Python scripts.
Furthermore, the majority of tutorials and online documentation for the NAO robot

use Choregraphe or Python scripts which can be added to Choregraphe with

ease.

12

Online - . .
Ease of Use Documentation Time Efficency Versatilty

Total Score

Choregraphe 5 3 5 1

1 1 0 5

1. Values range from 0 (worst) to 5 (hest)

Table 2: Weighted comparison of potential frameworks

6.0 Results

6.1 Accomplishments

Over the course of the project three STEM demonstrations were
completed, the first being a choreographed dance to the music of Daft Punk’s

Harder, Better, Faster, Stronger.

The next demonstrations that was implemented was tracking and kicking a
red ball. The robot searches the environment for a red ball. Once the ball is
found it will move to a relative position away from the ball then the robot will kick
the ball. After the kick the robot then will search the environment again for the

ball.

The last demonstration is a trivia game that highlights the dialogue abilities
of the NAO robot. Questions and multiple choice answers are read by the robot
that then waits for the players to answer. NAO keeps track of answers supplied
by the players and determines which players were correct. The robot keeps track

of the score, and at the end of the game winner(s) are announced.

6.2 Shortcomings

The optional set of deliverables was not completed due to time constraints
and the learning curve. This tier of deliverables included the implementation of

Simon Says using the NAO and a kinect, as well as adding to the tracking and

13

kicking demonstration. With regards to the kicking demo, kicking the ball at a
target and searching for the ball if it is not in NAQO'’s field of vision were explored

but also not implemented.

6.3 Potential For Expansion

Each demonstration is extendable and can be used as a guide or baseline
to create a new program for the NAO robot. For example, the trivia game can be
extended into a more complex game by adding players, rules, new questions, or
a number of other attributes depending on the desired game structure.
Implementation of better sound localization to boost hearing of the answers, like
looking at who's answering the question.

The kicking a red ball demonstration has the potential to be expanded by
adding in the searching for a target to kicking the ball at the target. Another
potential is to optimize the kick the robot performs. Using gyroscopic data to
dynamically execute a kick by changing the speed of the kick or repositioning the
foot in the better position. Adding the ability to track a different color or size ball
would add versatility to the demonstration. The hamstring of this demonstration
that ball has to be red and roughly 0.07m in diameter.

The dance demonstration could be expanded by adding more sequences
to the routine. Using center of mass data add more striking moments mainly in
the legs. This would be found using the built in sensors of the robot. This
information gets logged when the program subscribes to a specific memory

location. The data could help correct the balancing and inertia problem.

6.4 Lessons Learned
e Vigorous testing is essential to a successful system. Unfortunately, not all
NAO demonstrations are able to be unit tested as some require hands-on
user interaction (e.g. voice). However, every situation should still be tested

because each can have its own unexpected results on the overall project.

14

Even if the tests pass the first time, they should be retested again and
again. Changes made in one segment may not cause it to break, but it

may affect the functionality in another area.

The results that are coded for will not always come out the way they are
expected. Environmental factors heavily impact the limitations of robotic
sensors. During the early stages of testing facial and voice recognition, the
lighting and background noise would cause significant problems with the
expected results. Even if the code worked as intended in a controlled
environment, changes had to be made to compensate in the future

implementations.

The learning curve for the robot operating system (ROS) was steep and a
challenge to even get the enviroment setup. The documentation was out
of date, tutorials worked half the time, and forums were hard to come by.
The lesson here was that change happens often and more often than not
things will not go smoothly. Additionally, the majority of NAO tutorials /
documentation rely on utilizing the Choregraphe software or interfacing

with Python.

Getting familiar with the documentation of the API should have been the
first step of the process. It would have been worth spending a week just

learning the APl and would have saved time during the coding process.

NAO was recently (last two years) made available to consumers. Prior to
this the sole use of NAO was for educational and research purposes.
Therefore, the majority of NAO’s tutorials and documentation were in the

form of university research publications.

15

6.5 Conclusion

Three demonstrations were developed to showcase different aspects of
the NAO robot in order to create interest in STEM education. The demonstrations
were developed with the Choregraphe environment and to code in Python due to
the simplicity of integrating the two. The code is written for the NAOgqi operating
system and utilizes the NAOqi API. Despite not completing the Simon Says
deliverable due to time constraints, the other demonstrations combine to show off
what NAO can do and what students may be able to do if they choose a STEM
education. The demonstrations are extendable and will allow future developers to
explore the capabilities of NAO more in depth. Working with NAO is rewarding
and provides an excellent understanding of both the capabilities and limitations in

humanoid robotics.

16

