The Giving Child

Cici Collier Kellyn Larson Mike McClary

Griffin Metz Vanessa Ramos Nick Zustak

CSCI 370
June 2016

Introduction

The Giving Child is a non-profit organization that puts an emphasis on developing
mobile applications that empower children to help change the world. Their goal this year is to
guide children towards being knowledgeable about animal endangerment. We were tasked with
designing an application that raises awareness about this issue by allowing the user to create and
maintain their own virtual animal wildlife sanctuary. The game requires the user to use an
in-game currency to build enclosures for animals, interact with animals that come to the
enclosures, and ensure that all of the animals maintain a certain happiness level. We were also
required to provide information about different endangered species within the game to help
educate the children who play the game. 90% of the game’s purchasing price will go towards
select animal protection agencies. This game is targeted at a younger audience, but is easily
played and enjoyed by all ages.

Requirements

Functional requirements:

The app is supposed to be engaging for younger children. They should be able to interact
with animals in a positive manner and see how taking care of animals makes them happy. Our
client left this project very open ended, so our team came up with the idea to show animals in
enclosures from a bird’s eye view, and be able to click on them to start an interaction screen.
Eventually, you can add new enclosures to your sanctuary to bring in more animals.

e Display the sanctuary
o Include where the current enclosures are built, which animals are in the
currently-built enclosures, and where there is available space to build other
enclosures.
e Display available options on the sanctuary screen through buttons
o New day option that can be chosen after at least one animal has been tended to
and after all events have been taken care of. If these requirements have been met
then a new day will begin. The animal’s happiness will decrease and there is a
chance that an event will occur that day.

o Expand option that can be chosen once at least 15 stars have been collected from
dealing with events. This will bring the user to choose the environment for a new
enclosure, and then outline the shape and size of the new enclosure.

o Menu option that will take the user to the main menu with the options to see the
instructions and to restart the game.

e Use buttons to let the user specify details of their enclosure

o The size and shape are specified by the user selecting squares in the sanctuary that
will be enclosed together by a fence. The user will be able to choose the
environment type. The environment type will determine the ground shown
enclosed by the fence on the sanctuary screen and the background behind the
animal that appears in that enclosure. Animals will appear in environments that fit
their species type. For example, a lion will appear in the Savannah and not in the
Mountains.

e Make an animal appear in new enclosures.

o When an enclosure has been successfully made, an animal will appear in the
sanctuary screen. Its species will be randomly selected from a selection based on
which environment was chosen. The animal will also be given a random name
and a gender.

e Transition from looking at sanctuary to individual animals.

© When an animal in the sanctuary is clicked on, the screen will transition to being
one with an environment background, a close-up of the animal, and buttons that
will take the user to a facts-generating screen, take the user back to the sanctuary,
and let the user interact with the animal.

e Use buttons to interact with the animal with animations illustrating each interaction type.

o Three different interactions: play, feed, and wash. Each button will increase the
animal’s happiness a certain amount before beginning to decrease it. A warning
dialog does pop up before the happiness starts to decrease. If the user continues to
do a certain activity after the animal is tired, the happiness bar will start to lower.
Which could lead to the animal dying.

e Have a way to learn about the animals

o A facts screen on which the user can click through facts about the kind of animal
currently being tended to. This screen can be accessed from the animal interaction
screen. One fact will be displayed at a time until the user clicks Generate New
Fact.

e Have daily random events

o An event can occur after the user clicks the New Day button in the Sanctuary
Screen. We implemented four different events: poacher, tornado, sickness and
fire. These events appear randomly when a new day begins. The user must take

care of the event by clicking on it until it has disappeared. Once the user takes
care of the event the user will receive a star, or 3 stars for taking out 3 fires.
Give an option to go “back” to your previous screen
Have continual saving that the user doesn’t need to worry about
Give an option to reset the game and start over

Non-functional requirements:

Code the program in Java

Use Eclipse to program the game

Use libGDX to make the program Android and iOS compliant
Write to and read from text files to save the data

Use GitHub for version control and easy access

System Architecture

The final UML diagram for the application code is shown in Figure 1 below. The main
architecture of the game contains the game engine, the game screens, and helper classes. The

game engine is in charge of creating and starting the application in various platforms. The
screens create the different screens that the user will see and interact with. The helper classes

provide backend functionality for the game such as loading texture files.

-texture: Texture

+stringToTexture (toFind:String)

Info

+generatelnstruction()
+resetFile ()

GameEngine FenceMaker
+create () I ! +cellsConnected () : boolean
I lm = == = +checkValidCell (row:int,col:int) : boolean
l?\ I +checkNextDoor (currentCell:BoardCell)
rFEssEEEEEEEEms I ! +checkFenceEdges (row:int, col:int)
1 1 1 +createFences ()
AssetLoader 1 !
1 I
=== 1
! 1
! 1
' 1
! 1
1 | |<<abstract>>
BoardCell - - GameScreen
-selected: boolean +display ()
-partOfEnclosure: boolean
T
1
1
———————————————————— R e i e ! K o e e
P T T T T 1
1 ! I
I PP | === =— -_IJ ______ BRI e o ot [e
I ainMenu .
) ! AnimatSceeen : ChooseEnvironment
1
Options 1 +checkHappiness () : boolean 1
1 +save () 1
tresetFile () | | :
1 1 !
Sanctuary ConstructionSanctuary Facts

+checkForGameOver () :
+tornadoEvent ()
+tnumberDrawer ()

boolean

—environmentType:

EnvironmentType

+getEnclosureCell (
+setAnimaltoEnclos

)

ure ()

FIGURE 1. UML Diagram

+loadFactsFile ()
+generateFacts()

o The AssetLoader class acts as our own library of things we need to use throughout the
game. This includes everything from the animal graphics to the button graphics. We load

the images and initialize animations that will be used throughout the game. The

AssetLoader class helps us keep all of our attributes in one place.
o The BoardCell class contains the individual square cells of the sanctuary. Each cell holds

a selected texture (for displaying on the sanctuary screen), an unselected texture (for

when you click on it in the construction screen), and a boolean indicating whether or not

the cell is a part of an enclosure (to determine whether or not you can click on it in the

construction screen)
o The AnimalScreen is where the user can see a close-up of the animal they’ve chosen,
choose to see facts about that animal, interact with the animal by feeding it, washing it, or

playing with it, or go back to the sanctuary screen. This screen loads each animal

depending on the animal clicked in the SanctuaryScreen. The animal’s information is
loaded to this screen by using their unique name as a key.

The SanctuaryScreen is where the entire sanctuary can be viewed in bird’s eye view
form. This includes showing where the current enclosures are, which environments they
represent, and which animals are in them. The animals on this screen are clickable and
will take you to their respective animal screens as explained above. There are next day,
expand, and menu buttons at the bottom of the screen. When next day is chosen, a clock
animation will play through. If an event were to occur, it would be displayed in this
screen as an icon. These events will show up on the sanctuary and must be dealt with
before the user can move on to a different day.

The FactsScreen can be accessed through the animal screen, and is a screen with an
option to generate a fact about the animal you’re playing with. This button can be clicked
as many times as the user would like to click it. The program reads from a list of facts,
and randomly chooses one each time the button is pressed.

The ChooseEnvironmentScreen is accessed from the sanctuary screen through the expand
button. It is a transition screen where the user can choose an environment. Once the
environment has been chosen, the user will be taken to the construction screen.

The ConstructionSanctuaryScreen shows the current sanctuary, but here the user can
click on available squares to make a new enclosure. The submit button on this screen will
display a dialog if the enclosure is not valid. An enclosure is valid if it contains more than
one square and all squares are connected. An animal will be created in this screen and the
user will be notified that they have a new animal. Once the submission is complete, the
user will be taken back to the sanctuary screen where they can see their new enclosure
and animal.

The FenceMaker class is a helper class used when the user creates a new enclosure. The
class contains the algorithms that determine whether the user created a valid enclosure as
well as a method to set the correct textures to the cells to make the fences appear on
screen. This class is used within the construction sanctuary screen when the user submits
the cells they want for a new enclosure.

Technical Design

FenceMaker Algorithms:

The FenceMaker implements a few interesting algorithms. The two main algorithms are
cellsConnected() and createFences(). CellsConnected checks to make sure all of the selected
cells are connected and make a valid enclosure (there are at least two squares and everything is
connected vertically and horizontally). This function calls a recursive helper function called
checkNextDoor. This function simply checks each cell above, below, and to either side of it to
make sure it fits the criteria for being a selected cell and adds that cell to an arrayList of visited
cells.

CreateFences() checks every cell to see if it’s selected, and then checks above, below,
and to either side of it to determine if there should be a fence. If above, below, or to either side is
a selected cell, then there isn’t a fence, if it’s not selected or if the selected cell is on the edge of
the grid, that side gets a fence. Each side of the cell is marked with a 0 (no fence) or a 1 (fence)
reading from the top of the cell clockwise. Hence, a cell with a fence on the top and right side
would be denoted as “1100”. This, in addition to the previously selected cell environment, is then
written to a file.

Display Algorithms:

In our sanctuary screen, we need to display the number of days that has passed. We do
this with a function called numberDrawer. In this function, we take the integer number of days
and mod it by 10 to get the last digit of the number (for the number 1234, the value we find
would be 4). We then check the number of digits in the number, and set an offset factor
accordingly, then draw that last digit.We then divide the number by 10 to truncate it (1234
becomes 123), and start the process over. The first digit (1) will always be written directly to the
right of “Days”, and the offset factor pushes the digits to the right accordingly.

Dynamic Resizing Dependent on Screen Resolution:

In creating the game, it quickly became apparent that hard-coding number values for
button sizes, dialogs, grid sizes etc. causes problems when deploying to different platforms. To
get around this, nearly every sizing parameter is based on the current screen width and height,
which the 1ibGDX API is able to retrieve at any point in time. By making all the placements of
all the actors based on a fraction of the height or the width, everything shows up on the same
place no matter what device you’re playing the game on.

AssetLoader:

The AssetLoader allows all of the game graphics, animations, and other files to be stored
in one place. The files can then be loaded once at the start of the game and stored as static
variables. These variables are referenced throughout the code, so the assets are not being loaded
every time they are needed. This structure helps prevents memory over usage by ensuring the
graphics files are stored in memory only one time. Another benefit of the AssetLoader class is
the overall performance improvement of the application. The application is graphics intensive so
constantly loading textures would slow the game. Instead, the AssetLoader results in a few
seconds of loading time at the start of the game in exchange for improved performance
throughout the rest of the gameplay. The AssetLoader also contains the stringToTexture function
which allows us to conveniently load the correct texture cell for displaying the fences and
enclosures in the sanctuary. Lastly, the dispose function removes all textures from memory at the
end of the app.

Changing between screens:

The ability to change between screens comes with pressing a button that creates a new
screen. The flow between screens can be seen in the application storyboard seen below in Figure
2. The storyboard also shows the buttons that the user clicks to transition between screen.
Clicklisteners are used to listen to user input, and a new instance of the appropriate screen is
created and set so the user is transitioned to that screen. While we had the option to be able to
show and hide screens, we figured it would be the least memory intensive and easiest to make
new screens as we went along. This is because we were saving data to txt files and didn’t know
how to manipulate them between multiple open screens.

Custom ClickListener:

We created our own Click Listener to help click on BoardCells in the construction

sanctuary screen. The Click Listener, when called, finds where you clicked on the screen and
translates that into an integer number that defines which BoardCell was clicked. Once the
listener is called, any necessary code will be updated. Figure 3 shows a flowchart for the Click
Listener.

3: Choose
Environment

Savannah

> ®

Start Game

4: Construction

k Back Info | |Submit

You can click 'New Day’
when you are done with
your day activities

8: Facts

TG eI e
st 1 19 e,

Generate a

ule

FIGURE 2. Storyboard

Display new fact

/
/

>

Listen for click event

Determine where the event happened

!

Diplay any made changes

Figure 3. Click Listener

!

Save changed info to
xt file

Decisions

e Instead of using Unity, a cross platform game engine, we decided to use LibGDX, a free
and open source library. Our client required that our app runs on iOS and Android and
LibGDX allowed us to write one core codebase in Java, and then package/deploy it to
Desktop, Android, Web, and iOS. Unity is also licensed and required us to code in C#.
Unity specializes in 3D rendering, whereas we only needed 2D graphics for which
LibGDX is perfect. LibGDX allowed us to make more software design choices and write
more of our core game code, which we felt was an important part of this project.

e We chose to use Eclipse for our IDE because it was the IDE we all had experience
writing Java in. It also has all the plugins needed to use LibGDX and run iOS and
Android simulations. We also considered coding in Android Studio or Visual Studio, but
we determined that Eclipse would be easiest to export our project to multiple platforms
such as i10S and Android.

e We decided to store data in local files private to the app rather than using a database.
Databases are not a built in feature for LibGDX so adding it in would be complicated-
especially across both Android and i0OS. File I/O is both much simpler to implement and
covers what we need it to for the purposes of our project.

e We implemented an AssetLoader to manage and load all our assets at once instead of
loading each asset individually as we use it throughout our code. This allows us to have a
single place to store all our assets and make our game memory efficient by only loading
an asset once.

10

Results

Features we did not have time to implement:

Sounds

Ability to switch between platforms with the same account/data
Breeding animals

Fence construction freedom

Time limit for fixing the fences
Gathering resources to build the fences
Water supply

Planting grass

Building structures

Animal tracks

Collars with bells

River baths and forest walks

Skinny animals

Growing brush

More than one animal in an enclosure if there’s space

Performance testing results:

This project has been tested on Desktop, 10S, and Android. The game runs on all
platforms, but looks best on the mobile platforms as those are the platforms the game was
designed for. Apart of a few seconds of loading at the beginning, the app runs smoothly with
minimal lag or delays.

Summary of testing:

Because our project is a game driven by user input, most of our testing could be done by
simply running the app on the various platforms and manually using the Ul. For example, if we
needed to test our ClickListener we would need to run the app on the Desktop and manually play
the game to check that the clicks were working properly. Sometimes this was very frustrating,
since for some tests we would need to run through the game up to a certain point. This was time
consuming, and sometimes only resulted in a small piece of information. In addition the saving

11

of the game is done through text files, so to test this we could just run the game and view the text
files. However, for some of the backend functionality, such as our fence-making algorithm, we
did implement JUnit tests to ensure that everything was working as intended.

Lessons learned:

e LibGDX provides a simple way to deploy a simple code base to different platforms
including desktop, Android, and i0OS. This made it relatively simple to develop one app
for multiple platforms.

e [t’s important to set realistic goals for your project and not get caught up trying to add
unnecessary features early on in the process. Fortunately we got this advice from both our
advisor, Dr. Paone, and Walter, one of our clients. Following this advice we created a
priority list of all the features we were thinking about adding, ranking them as “must

99 ¢¢

have,” “nice to have,” and “low priority.” This kept our development focused and made

for a relatively stress-free work flow.

Good communication with the client keeps the process going smoothly.

Your team may think you’re all on the same page, but when implementation of the design
starts, it could turn out that everyone has a different idea and you need to take a step back
to figure out what’s actually going to happen.

e Sometimes it just takes a fresh set of eyes to see where the error is in your code, whether
or not those eyes belong to someone who is better at coding than you or not.

e Showing up on time and not leaving early are good ways to show your teammates that
you’re there to help get things done and be a part of the team.

e Even though you may think you’re good at giving presentations, it’s still a good idea to
practice a few times before the actual thing because nerves will make you forget things,
but at least if you’ve practiced you’ve probably recovered from the same part before.

If you buckle down and focus, a team of six can get a lot done in only a few hours.
Graphics take longer than you’d think, so make sure you start small and work up from
there.

e There will always be little bugs hidden in your code when you think you’re basically
done, so make sure you save time before your project is due to fix small errors.

e Everyone has a different style and skillset, so come in to a team prepared to compromise
with, listen to, and learn from your teammates.

12

Ideas for extension:

Be able to add more animals to an enclosure to be able to have multiple animals together.

o Rather than only having one animal per enclosure regardless of the enclosure size,
there could be one animal per a certain number of cells

Extend the size of the grid depending on the number of days that have passed.

o Eventually, the user will fill up his or her sanctuary.

Have the animals move around their enclosures on the sanctuary screen

o This would look more enticing and be slightly more interactive with the user

Include more animations

o Adding more animations, such as the animals breathing or the wind blowing,
would make the game more enticing and more real

Add option to build addition features, both for animals and environment

o This would allow for more complex interactions with the animal and in the
construction screen

Include resources around the sanctuary to gather to be able to build and do more

o Instead of being given everything, the player could have to gather sticks
themselves in order to build the enclosures

Incorporate sound into game events

o For every action that happens, we can have a custom sound play

Expand upon the happiness meter

o Include a boredom, hunger and thirst level

Add more animals and more environments

o The more environments, the more choices the user has in designing their
sanctuary. However, the environments take more time to make than they seem.
o The more animals and environments, the more unique the user’s sanctuary can be.

Create an interactive storyline for the user to enjoy

o Introduce a basic storyline to keep the user entertained. At certain points
throughout the game, a new addition to the story could be added to keep the user
interested.

13

