Dreamjob Deliverer

salesforce

June 20, 2016

Jacob Davis
Connor Dougan
Graceanna Petty

Table of Contents

Table of Contents
1. Introduction

1.1 Client Description and Project Background
1.2 Product Vision
2. Requirements

2.1 Functional Requirements

2.2 Nonfunctional Requirements

3. System Architecture
3.1 Webpage Architecture
3.2 Database Architecture
4. Technical Design

5. Design and Implementation Decisions

5.1 Languages

5.2 Data Management
5.3 Libraries

5.4 Modules
5.5 Testing
5.6 Alternatives
6. Results
6.1 Project Results
6.2 Lessons Learned

O NN I [B W WL o NN =

—

N (o T (S S (S

—
—

—
—

—_ | [—

1. Introduction

1.1 Client Description and Project Background

Salesforce pioneered the shift to cloud computing, and today they're delivering the next
generation of social, mobile, and cloud technologies that help companies become customer
companies and revolutionize the way they sell, service, market, and innovate. As a technology
company of more than 20,000 employees, they give tests to evaluate job candidates. They
generally give the test remotely, freeing the candidates from a commute and allowing the test to
be taken in a comfortable environment. To maintain the applicability of the test, they restrict the
tests shareability, primarily preventing pre-canned solutions. The current solution involves using
GoToMeeting as an interface to control a VM that contains the PDF containing the programming
project details. This is extremely cumbersome. Also, on Linux using the GoTo web app, the
test-taker is unable to control the VM and cannot pan the document, which mandates the use of a

Mac or Windows machine while taking the test.

1.2 Product Vision

The goal of this project is to overhaul the programming test process. Our Salesforce contact
envisioned a web interface that empowers the test-giver and restricts the test-taker. This
application allows the test-giver to manage a repository of tests, administer a test via a shareable
link that is time-locked, and collect/archive solutions to the test. In addition, the application stops
test-takers from sharing the test and displays a time-remaining clock for their convenience. Job
candidates will utilize this web application by receiving a url to a viewable test which displays
the test instructions in a way that prevents them from downloading the materials and is readily
accessible from Linux, Mac OS, and Windows.

2. Requirements

2.1 Functional Requirements

The Dreamjob Deliverer web application must have separate administrator and user functionality
and access in order to provide the best experience for both parties. Administrators have two main
uses for the app. They need to be able to create tests and administer them to candidates and
administrators also need the ability to review test submissions and update times of any tests
already administered. Users will receive a URL to access the test which displays all information
and a method for submission on a web page. Users should not be able to download the
instructions, or it should at least be very difficult to do so.

Administrator functionality

e View list of administrable tests

e (reate new administrable tests
o Title
o Write a description for the test type
o Upload an instructions file

View test instructions
Schedule new test instance

o Start date and time
o End date and time
o Candidate name and/or email for identification
o Create a shareable URL for the candidate to access the test

e View in-progress and scheduled test instances
o Edit start date and time
o Edit end date and time
o View candidate name and/or email
o Access shareable URL
o View remaining time

e View completed test submissions
o View the start and end times (read only)
o View candidate name and/or email
o Access the most recent test submission

e Access candidate test page

User functionality
e Access test page via shared URL
e View test instructions
o Not downloadable

e View time remaining
o Toggle to show/hide (hide by default)
e Upload submission
o Browse filesystem for file to upload
m Limit file size to 100MB
o Uploading does not end the test so the user is able to upload additional attempts
o Confirmation of successful upload

2.2 Nonfunctional Requirements
e Administrator authentication using OAuth 2.0
e Deploy as an application on Heroku
o Can be any kind of application supported by Heroku (language not specified)
The test taker can upload any file type for submission
The test instructions are PDF files
Tests will be stored in a database
o Can be any kind of database supported by Heroku and the language chosen
e Use github
o For version control
o Accessible by the client

3. System Architecture
3.1 Webpage Architecture

At a high level of abstraction, Dreamjob Deliverer needs to be used by two different groups of
users: administrators and test-takers. Due to the differing natures of these groups, this application
has separate user interfaces for each group. Figure 1 illustrates how these user interfaces interact
differently with each group of users and the test database. Test-takers only need to view a single
test and provide a submission file, which can be done in a simple interface. Administrators have
the ability to view tests as a test-taker would. In addition, administrators also need to be able to
create, schedule, view information, and share tests. All of this is accomplished in an
administrator interface, separate from the test-taker’s interface.

Create &

Admin GUI Administer Tests

Manipulate/View Test/ \
Templates, Instances,

& Submissions

Test Info &
Shareable URL

View as User

Retreive In-Progress Test
& Update Finished Test

User GUI |«

View Test &
Upload Submission

Figure 1 - Webpage Architecture

While, to the users, Dreamjob Deliverer appears to be two separate applications, it is unified into
one application through the database. Figure 1 shows how all of the data is stored in the same
database and the user interfaces interact with the same data. To separate the two, the test-takers
cannot change data through their interface that the administrators have control of and vice versa.

3.2 Database Architecture

When creating the structure for the database used by Dreamjob Deliverer, the various types of
data that need to be stored had to be considered. It was necessary to consider the structure of the
database because entire files need to be written to the database. These files can be varying sizes
and potentially large so a data structure for storing under these circumstances was chosen. Figure
2 shows the entity relationship diagram of the database and how these considerations affected the
end result. Two tables were constructed, one for test templates and one for test instances that are
currently scheduled. Many instances will have the same set of instructions and title, so separating
that data from the test instances saves a significant amount of memory. This saves memory
because the same set of instructions doesn’t need to be saved in the database multiple times for
multiple test instances, instead it can be saved in one place in the database and accessed multiple

times.

Tests
Global source of tests
*Title varchar (20)
°Description varchar (256)
°Instructions File bérr;ea

Test Instances
n #IIEI ‘EE‘"EEE"[EEE}
°Test Title varchar (20)
YName varchar (256)
°Email varchar (256)
*Start_Time timestamp with time zong
*End Time timestamp with time zong
""Latest_SubmJ.ssn.Dn bytea
OSubmi==zion Filename varchar (258)

Figure 2 - Database Entity Relationship DMagram

As stated in Section 3.1, the test-taker and administrator interfaces each allow modification of different
pieces of data. More specifically, the test-taker interface only grants the ability to alter the latest
submission and submission filename entries. The administrator interface grants the ability to modify all
other attributes in both tables apart from the URL which is created automatically.

4. Technical Design

To test-takers, the Dreamjob Deliverer application is a webpage that hosts a set of test
instructions and allows the test-taker to upload a file for submission. The application’s purpose is
to provide a test of the candidate’s capabilities, therefore it is important that the set of
instructions cannot be easily distributed. All instruction files are PDFs stored on the database and
are simple to embed in web pages. All browsers embed PDFs differently, consequently it is
impossible to prevent the test-taker from simply downloading the file if it is displayed in this
manner.

It is unknown what browser the user will use, therefore we had to find a solution with consistent
behavior across many browsers. The JavaScript library PDF js provides the functionality needed
for displaying PDF files in a secure manner. PDF js displays each page of the provided PDF in
separate canvas elements on the page, as shown in Figure 3, where one canvas is highlighted to
better display the layout. It does this by loading each page one at a time into its own canvas and
adding the canvas to the division element that is meant to hold all of the pages. This is
demonstrated in Figure 4 where the division element that contains both pages is highlighted. The
end result is a series of ordered canvas elements that each move fluidly when the user resizes the
webpage. Once the PDF has been embedded, it is simple to remove the option for the user to
download the file. Additionally, because all of the PDF data is drawn onto a canvas, it becomes
much more difficult to access the raw PDF data.

Simpla Tasl

e m

Cmstion | Chiestion 2

Writc a "Helle World” What is your favorie
prugrim in o lngwige el your progoaming o se?

chaice

Figure 3 - Dreamjob Deliverer Test-taker Page

Simple Teat

- D
Cpuestion ueslion 2
Write a “TTelle World" Whal 1= vour [avorile

pragram i e languages o vour propramming lanmuaee?

Clnkoe.

Figure 4 - Division Element Holding the Canvases

The PDF js library can only read PDF data from a file location or from a byte array. Due to the
fact that the files are not stored in a file system, we have to retrieve the file data from the
database and send it to PDF .js as a byte array. This presents a challenge because of the degree of
separation between the database and PDF.js. Figure 5 illustrates the data flow of the PDF files
from the database to being displayed on the page. PDF files begin as data in the database which
is retrieved by Node.js as a bytea buffer. This type of buffer is impractical to send through an
HTTP response so Node.js must first convert it into a base64 string. After being sent to the web
page through the HTTP response, the web page converts the string into a byte array which
PDF js uses to create the canvas elements and display the PDFs on the page.

S @

bytea buffer

base64 byte array

carvas elements

Node.js base64 string Web Page

Figure 5 - PDF Data Flowchart

5. Design and Implementation Decisions

5.1 Languages

Dreamjob Deliverer was written using a combination of Node.js, HTML, CSS and JavaScript.
As per the client’s request, the application was required to be deployed using Heroku (a platform
owned by Salesforce and used to build and deploy web applications on the cloud). Of the many
options, the best choice for developing a web application in a Windows environment was
Node.js. In addition; HTML, CSS, and JavaScript were selected due to browser standards and
team member experience. More specifically, CSS3 was used in conjunction with JavaScript
libraries to create page layouts and formatting.

5.2 Data Management

Data for Dreamjob Deliverer is stored in a PostgreSQL database on Heroku. PostgreSQL was
chosen for the database language because it is simple to use with Node.js through Heroku and
one team member had previous experience using the language. The application requires storing
various file types, dates, times, and text. Storing files in a database rather than in a file system
allows for better version management, replication, and portability. Naturally, the rest of the data
is also stored in the database.

5.3 Libraries

Libraries used by Dreamjob Deliverer include Bootstrap, jQuery, Moment.js, and PDF js.
Bootstrap was used in CSS and Javascript to make the page look more professional through
aesthetics and page formatting. It also makes writing simple front end visual functionality much
simpler. Bootstrap requires jQuery, but jQuery also simplifies writing basic front end
functionality. Moment.js is also required for some Bootstrap functionality that is used in the
application. Moment.js is primarily used for manipulating and displaying date information.
PDF.js was used to embed a PDF into our page in such a way that the user has a difficult time
downloading the file. It also provides additional PDF support for the future if needed.

5.4 Modules

Modules used within Node.js as part of the Dreamjob Deliverer application include express, pg,
crypto, multer, body parser, and fs. The express module is used for page routing and HTTP
helpers. This module is the backbone for the entire application. The pg module is used to
interface with the PostgreSQL database through queries and error handling. The crypto module is
used for creating a unique URL path for each test instance that is scheduled. The body parser
module is used to get values from elements in the DOM during a POST request in Node.js. In
Dreamjob Deliverer it is implemented along with multer and fs to allow uploading files from the
front end and storing them in the back end. Multer works closely with body parser to get the file

10

data from the upload and save it to a temporary location on the file system. Afterwards, fs reads
the data into the database and removes the temporary file. The use of all three modules together
simplified the process of allowing users to upload files.

5.5 Testing

Dreamjob Deliverer was tested using a combination of automated testing and directed
exploratory testing. The Selenium webdriver was used to simulate a user’s actions within the
application in various browsers. The assertion library Chai was used to verify expectations about
various characteristics of a page.The tests themselves were written in coffee-script in an effort to
streamline the test creation process. Mocha was used to tie all of these libraries together into a
contiguous testing environment that would interact seamlessly with the application.

5.6 Alternatives

Throughout the development of Dreamjob Deliverer there were alternatives to several of our
design decisions. Several methods were considered when displaying a difficult to download
PDF. Yet, due to the way Firefox embeds files it was decided that none of the other options were
viable. There were also several options for implementing date and time pickers in a web page,
but the simplest, HTMLS5 datetime input fields, are not supported in Firefox. The best method for
date and time pickers in Dreamjob Deliverer was determined to be the Bootstrap datetimepicker.
PostgreSQL had several alternatives, though the only experience with databases on our team
involved PostgreSQL so every other option provided an unnecessary learning curve. AngularJS
was an alternative to Node.js, but had a steeper learning curve than desired. Although there were
many alternative options, the best options were selected for the context of this project.

11

6. Results

6.1 Project Results

The functionality of Dreamjob Deliverer has been verified using automated webdriver testing as
well as directed exploratory testing. The Selenium webdriver was used to test functionality in
both Google Chrome and Firefox. Directed exploratory testing was used primarily to test
functionality in Internet Explorer and Microsoft Edge. Our project will likely not function as
expected in older browsers that do not support CSS3. All functional and nonfunctional
requirements were met apart from the administrator authentication. Using OAuth 2.0 for
administrator authentication could not be completed due to time constraints. As stated by the
client this requirement had the lowest priority. Any features that involved uploading a file were
implemented in a way that limits its functionality due to language limitations and time
constraints. While the user can upload files, any file that is too big cannot be held in the
datatypes of the libraries we used. As a result files to be uploaded cannot be larger than 100
megabytes in size. However, due to the scope of the project, this should not consistently cause
problems.

6.2 Lessons Learned

e Libraries such as PDF.js and fs, while useful, still have their own limitations. Whether or
not to use a library becomes a compromise between simplicity of using a library and the
restricted functionality they offer.

e Handling file uploads can be difficult. While there is some support for doing this, if there
are any complications it can become an extremely challenging task.

e Automated testing of web applications is a powerful tool but is difficult to use.
Automated testing allows for speed, repeatability and reliability but locating all of the
elements necessary through a webdriver is much more difficult than locating them
manually. All in all, automated testing will save time in the long run.

e Browser differences force programmers to think creatively. An initial approach may not
work in all of the major browsers so many alternatives must be considered and explored.

12

