
 
 

 

 

RetroActive	for	Pivotal	Tracker	
Team:	

Espen	Roth	
Jennifer	Jacobs	
Jesse	DeMott	
Taylor	Rummel	

	
Client:		

Morgan	Whitney	  



	
2	

Table	of	Contents	

1	 Introduction	....................................................................................................................	3	
1.1	 Client	Description	................................................................................................................	3	
1.2	 Product	Vision	......................................................................................................................	3	

2	 Requirements	.................................................................................................................	3	
2.1	 Functional	Requirements	.....................................................................................................	3	
2.2	 Non-Functional	Requirements	.............................................................................................	4	

3	 System	Architecture	........................................................................................................	4	

4	 Technical	Design	.............................................................................................................	5	

5	 Design	Decisions	.............................................................................................................	7	
5.1	 Framework	..........................................................................................................................	7	
5.2	 Database	..............................................................................................................................	7	
5.3	 Redux	..................................................................................................................................	8	

6	 Results	............................................................................................................................	8	

7	 Appendix	........................................................................................................................	9	
7.1	 Deployment	.........................................................................................................................	9	
7.2	 Additional	Figures	................................................................................................................	9	

	

	



1 Introduction	

1.1 Client	Description	

Pivotal	 is	 an	 agile	 software	 development	 company	 that	 provides	 several	 software	 solutions.		
Pivotal	has	a	focus	on	enabling	clients	to	 improve	productivity	through	their	software	such	as	
Pivotal	Web	Services	 and	Pivotal	 Tracker.	 Tracker	 is	 a	project	management	 tool	 intended	 for	
software	teams.	It	allows	teams	to	organize	and	review	the	design	process	of	a	product,	from	
research	to	implementation	to	debugging	to	production.	The	software	is	divided	up	into	smaller	
tasks	called	stories	that	are	organized	into	a	logical	order.	

True	to	the	agile	process,	each	team	at	Pivotal	performs	a	bi-weekly	retrospective	(or	“retro”).	A	
retro	is	an	hour-long	meeting	which	gives	the	team	an	opportunity	to	openly	discuss	how	they	
are	doing.	Anyone	can	bring	up	a	discussion	item,	categorized	by	how	they	feel:	happy,	confused,	
or	sad.	Important	items	are	discussed,	and	the	resulting	action	items	are	assigned	to	an	individual	
to	be	resolved.	After	a	retro	is	completed,	the	action	items	are	recorded	manually	on	a	Google	
Sheet	to	be	discussed	at	the	beginning	of	the	following	retro.	

1.2 Product	Vision	

The	goal	of	RetroActive	is	to	capture	and	streamline	the	retrospective	(retro)	process	in	a	web	
application.	Currently,	retros	are	done	verbally	with	a	moderator	recording	discussion	items	on	
a	 google	 spreadsheet.	 	 Voting	 is	 done	 manually	 by	 raising	 hands	 and	 expressing	 interest.		
RetroActive	will	 improve	 this	process.	 	Functionally,	users	must	be	able	 to	create	categorized	
discussion	items,	to	vote	for	items	they	deem	important,	and	to	maintain	the	retro	on	a	database	
for	future	reference.	Any	updates	to	a	retro	needs	to	also	update	the	displays	of	all	other	clients	
in	 real-time.	 Moderators	 of	 the	 retro	 should	 be	 able	 to	 create	 an	 action	 item,	 which	 will	
correspondingly	create	a	story	in	Pivotal	Tracker,	based	on	a	discussion	item	and	assign	a	team	
member	to	the	task	so	that	this	item	can	be	improved	upon	for	the	next	sprint.	This	will	require	
the	application	to	utilize	the	Pivotal	Tracker	API	to	get	and	push	information	for	the	team.	

2 Requirements	

2.1 Functional	Requirements	

• The	application	should	use	Google	Authentication	to	verify	users.	
• Users	will	 be	 asked	 to	 provide	 a	 Tracker	 API	 token	 to	 be	 stored	 on	 the	 application’s	

database.	
• Tracker	API	tokens	should	be	used	to	get	information	about	the	user.	
• Users	should	only	see	projects	they	are	a	member	of.	
• Users	can	only	create	retros	for	projects	they	are	members	of.	
• Users	can	create,	edit,	vote,	and	un-vote	for	items	in	a	retro.	
• Users	 should	 be	 able	 to	 create	 and	 edit	 an	 action	 item	 from	 a	 retro	 item	 and	 a	

corresponding	chore	for	it	should	appear	in	the	Tracker	project.	
• Users	can	visit	and	participate	on	a	mobile	device	with	a	reasonable	format.	



	
4	

	

2.2 Non-Functional	Requirements	

• The	application	needs	to	use	a	database	service	provided	by	Pivotal	Cloud	Foundry.	
• The	application	needs	to	use	a	web	backend	supported	by	Pivotal	Cloud	Foundry.	

3 System	Architecture	

Our	client	left	decisions	about	system	architecture	up	to	us.	The	only	requirement	was	that	we	
could	deploy	to	Pivotal	Web	Services	(PWS)	for	production.	Therefore,	since	Ruby	on	Rails	was	
supported	by	PWS	and	we	had	some	backend	experience	with	Rails	we	decided	to	use	that	for	
our	 server.	We	 also	made	 the	 decision	 to	 use	 a	NoSQL,	 or	 non-relational,	 database	 to	 learn	
something	new	and	because	a	document	store	fit	our	needs	when	storing	retros.	The	Mongoid	
gem	which	connects	ActiveRecord	to	Mongo	was	extremely	useful,	allowing	us	to	use	normal	
object	syntax	when	interfacing	with	the	database.	

We	also	used	a	continuous	delivery	process.	Whenever	we	finished	a	user	story	we	would	deploy	
that	version	to	PWS	(retroactive.cfapps.io),	giving	us	constant	confidence	that	we	had	at	least	
one	working	version.		This	also	made	it	possible	for	anyone	to	log	in	from	any	device	to	see	the	
current	 state	of	 the	project.	This	allowed	our	client	 to	 see	our	progress	and	give	us	constant	
feedback,	again	true	to	the	agile	process.	

Since	we	were	also	interfacing	with	Pivotal	Tracker	to	store	data	related	to	action	items,	we	had	
to	design	our	system	to	sync	two	separate	data	sources.	To	deal	with	this	we	had	the	client	do	all	
of	the	syncing	of	data,	and	stored	only	a	minimal	amount	of	the	action	items’	data	on	our	side.	

Clients	are	provided	a	single	bundle.js	file	of	the	entire	website	(except	for	CSS	and	assets)	built	
from	 the	WebPack	 bundler	 tool.	 	 This	 allows	 us	 to	 ship	 the	 React.js	 library.	 React	 provides	
JavaScript	objects	called	“components,”	which	render	into	DOM	objects	when	the	page	is	loaded.	
All	 HTML	 and	 logic	 can	 then	 be	 translated	 to	 JavaScript	 and	 placed	 inside	 the	 bundle.	 React	
components	 can	 render	 JavaScript-manipulated	data	 as	HTML,	 create	other	 components	 and	
pass	data/functions	to	components	nested	within	them.	Additionally,	components	can	have	an	
individual	state.	Data	flows	from	top	to	bottom,	biggest	components	to	smallest,	meaning	all	of	
the	state	changes	come	from	the	root	node.		

Our	 design	 flow	 has	 a	 top-level	 component	 that	 creates	 sub-components	 and	 passes	 state	
variables	and/or	functions	(called	props)	as	needed.	Props	are	what	the	child	component	receives	
as	data	 from	 the	parent,	 passed	 through	 like	HTML	attributes.	 Since	 functions	 are	 First	Class	
Objects	in	JavaScript,	functions	they	can	be	passed	down	just	as	any	other	datatype	can.		State	
variables,	used	only	 in	the	root	node,	are	the	authoritative	source	of	 information	for	the	sub-
components.	They	determine	what	the	root	passes	down	the	children	as	props.		

Functions	passed	down	as	props	means	that	the	root	component	can	configure	the	children	on	
how	to	React	when	one	of	the	components’	events	are	fired.	Since	the	root	node	is	the	only	one	



	
5	

which	affects	‘state,’	 it	has	all	of	the	functions	which	handle	the	state	of	 itself	and	everything	
below.		When	the	state	of	the		root	node	changes	all	affected	components	re-render	themselves	
to	reflect	the	change.	This	is	done	without	the	user	ever	having	to	refresh	the	page.	

4 Technical	Design	

Our	application	can	be	split	into	several	components:	the	API,	the	mobile	and	desktop	clients,	
and	the	Pivotal	Tracker	integration.	

 
	

Figure	1,	the	overall	design	of	RetroActive.		The	left	side	indicates	that	our	application	interacts	
with	the	Pivotal	Tracker	API	and	the	Mongo	database.	



	
6	

Our	API	(built	with	Ruby	on	Rails)	interacts	with	the	Mongo	database,	which	stores	the	retros	and	
all	of	the	associated	information.		In	addition,	when	someone	creates	an	account	on	RetroActive,	
we	store	their	name,	email	and	Tracker	token	so	that	they	can	continue	to	access	the	application	
without	supplying	their	token	every	time.		Once	a	token	is	supplied,	the	users’	Tracker	projects	
are	loaded	onto	the	dashboard.		A	user	can	view,	create	and	edit	retros	for	any	project	of	theirs	
on	Pivotal	Tracker.			

Since	we	chose	to	use	Ruby	on	Rails,	the	design	of	our	back-end	was	mostly	decided	for	us	-	a	
Model	View	Controller	(MVC)	application.	We	decided	to	use	MongoDB	for	our	database	storage	
as	a	JSON	file	was	a	good	model	for	our	text-based	data.		In	addition,	this	gave	us	more	flexibility	
in	the	layout	of	the	database	because	it	was	not	as	rigid	as	a	SQL	database,	which	would	have	
required	more	setup	time	to	design	the	schema.	

Our	original	design	used	Redux	to	push	the	React	state	of	an	entire	retro	to	cloud	storage	every	
time	there	was	a	change.	Due	to	time	constraints	we	dropped	Redux	in	favor	of	using	ajax	and	
jQuery.	Using	this	model	we	only	pull	data,	such	as	number	of	votes,	from	a	single	retro	item	
when	the	version	number	of	the	retro	has	changed.		The	version	number	is	updated	each	time	
that	the	database	is	changed,	and	when	the	local	version	number	does	not	match	the	database’s	
version	number	a	new	version	is	pulled.			

The	page	is	statically	generated	by	Rails,	and	updated	dynamically	by	the	React	framework.		Each	
page	is	built	from	several	React	components	each	with	a	specific	purpose.		This	created	a	good	
organizational	structure	where	code	could	be	reused	when	needed.	

Although	 Rails	 normally	 follows	MVC	with	 its	 own	 views,	we	 only	 had	 one	 Rails	 view	 in	 our	
application.	The	Javascript	framework	we	used	(React)	allowed	us	to	render	views	dynamically	
on	the	client	without	having	to	use	full	page	reloads.	Then	the	Rails	server	is	used	just	to	respond	
to	Ajax	requests	for	data	the	client	needs.	



	
7	

 
Figure	2,	Workflow	for	login	and	dashboard.	

5 Design	Decisions	

5.1 Framework	

The	framework	chosen	had	to	be	supported	by	Cloud	Foundry,	which	offers	a	wide	selection	of	
options.	Ruby	and	Rails	are	easy	to	learn,	set	up,	and	plenty	of	good	documentation	exists.		Rails	
is	used	on	the	Tracker	back-end;	this	will	enable	our	client	to	continue	to	develop	the	product	
after	field	session.		In	addition,	several	members	of	the	group	were	already	familiar	with	Ruby	
and/or	Rails.	Consideration	went	 into	using	Node.js	 to	more	naturally	 fit	our	 Javascript	heavy	
product,	but	the	additional	learning	curve	for	a	small	functionality	pay-off	was	ultimately	deemed	
not	worthwhile.	

5.2 Database	

The	 choice	 of	 database	was	 the	major	 bootstrap	decision.	 Like	 the	 framework,	 the	 database	
needed	to	be	a	provided	service	through	Cloud	Foundry,	which	offers	several	common	databases	
at	the	click	of	a	button.	The	decision	was	primarily	from	a	functionality	and	usability	standpoint.	



	
8	

Mongo	was	chosen	because	our	product’s	data	naturally	fits	well	into	a	JSON	document	format.	
Although	 SQL	would	meet	 all	 functional	 requirements	 as	well,	maintaining	 it	 with	 a	 useable	
scheme	would	require	a	significant	time	investment	that	Mongo	did	not.	

5.3 Redux	

Redux	 is	 a	 Javascript	 addition	which	 reduces	 the	 volume	 required	 for	 data	 transfers.	Getting	
Redux	set	up	was	only	a	small	problem.		The	larger	issue	was	the	amount	of	time	it	would	take	
to	learn	how	Redux	changes	the	process	of	managing	React	state	and	the	time	to	apply	it	to	our	
product.	Specifically,	we	would	have	to	learn	how	to	manage	state	changes	for	clients	such	that	
other	clients	get	close	to	real-time	updates	to	reflect	the	changes	in	an	efficient	manner.	The	idea	
of	having	the	state	change	without	having	to	refresh	the	page	isn’t	unique	to	Redux,	so	it	wasn’t	
crucial	to	support	it	even	if	it	does	it	better	than	the	alternatives.		

For	 those	 reasons	our	 team	decided	not	 to	make	 the	 time	 investment	 in	 learning	 the	Redux	
framework;	rather,	we	would	focus	on	completing	the	project	using	the	technologies	we	already	
knew	(jQuery	&	ajax).	

6 Results	

To	date	the	app	runs	on	both	Chrome	and	Firefox	(Internet	Explorer	untested)	and	a	wide	variety	
of	browsers	for	the	phone,	all	successful.	Older	browser	support	is	limited	primarily	by	their	CSS3	
support,	however	all	current	versions	of	the	most	popular	browsers	do	support	CSS3	which	is	
important.	
	
The	most	glaring	problem	with	the	current	implementation	is	how	the	website	state	changes	as	
new	data	is	pushed	onto	the	server,	and	then	to	all	clients.	The	state	for	the	client’s	view	does	
update	 automatically	 as	 information	 changes	 as	 per	 requirement.	 Currently	 the	 client’s	 page	
sends	GET	requests	to	the	server	at	short,	regular	intervals	to	see	if	the	version	of	the	retro	the	
client	has	is	up-to-date.	A	retro’s	version	changes	whenever	an	item	is	created,	deleted,	or	voted	
for.	If	the	version	numbers	do	not	agree,	the	client	pulls	the	entire	retro	JSON	document	from	
the	server	and	changes	the	client’s	page	state	to	match	the	latest	version.	This	is	a	sub-optimal	
solution	to	ensuring	clients	have	the	latest	state	of	the	retro.	A	better	solution	would	be	to	have	
the	server	send	a	signal	to	the	client	whenever	a	change	is	made,	and	have	the	client	pull	the	
retro	data.	This	would	reduce	network	traffic	by	limited	network	traffic	to	when	it	a	change	has	
actually	been	made.	
	
All	requirements	for	version	1.0	have	been	met.	Currently	the	app	is	deployed	onto	Pivotal	Web	
Services	and	is	publicly	available	for	anyone	to	use.	We	have	tested	this	application	by	performing	
retrospectives	with	the	application	once	a	week	for	our	team	as	well	as	having	other	teams	test	
and	critique	it	by	using	it	in	their	retros	as	well.	
	
Additional	features	such	as	assigning	moderator	status	to	the	retro	creator,	providing	options	to	
change	the	type	of	an	action	item	from	chore/story/bug,	or	allowing	users	to	comment	on	retro	
items	are	all	extra	features	that	were	not	implemented	due	to	time	constraints.	 	



	
9	

7 Appendix	

7.1 Deployment	

We	have	created	an	installation	script	that	will	set	up	the	development	environment	on	a	system	
running	OSX	which	is	what	our	client	will	be	using	to	further	develop	RetroActive.	This	script	is	
included	in	the	project’s	git	repository.	

For	development	purposes	we	also	have	a	build	script	named	build_client.sh.	This	allows	you	to	
build	 the	client	without	pushing	 to	PWS	 for	 testing	purposes.	This	 script	also	copies	any	 files	
within	node_modules	that	we	had	to	customize.	Any	of	the	files	that	are	customized	are	placed	
into	the	build	folder.	This	is	because	npm	install	is	run	during	the	build	and	will	overwrite	any	
changes	made	within	node_modules.		

We	also	have	a	deploy	script	in	the	the	project	folder	that	will	use	the	above	mentioned	script	to	
build	the	javascript	client	and	deploy	the	app	to	PWS.	This	should	only	be	used	when	the	project	
is	production	ready.	

7.2 Additional	Figures	

Figure	3,	The	Dashboard	shows	only	projects	you	are	a	member	of	and	any	retros	that	have	been	
created	for	it.	The	Dashboard	also	provides	information	regarding	the	state	of	all	retros.	



	
10	

Figure	4,	if	an	invalid	Tracker	token	is	provided.	The	dashboard	will	indicate	that	the	user	needs	
to	re-check	their	token.	Because	it	is	invalid,	there	are	no	projects	or	retros	the	user	can	view.	

 
Figure	5,	users	can	change	between	two	modes	of	column	item	sorting	by	pressing	the	button	at	
the	top.	The	default	option	is	sorting	by	time,	where	newer	items	appear	further	up.	The	second	
option	sorts	by	votes,	with	items	with	more	votes	appearing	at	the	top	instead.	
 
	



	
11	

	
Figure	6,	an	action	item	created	from	a	retro	creates	a	corresponding	chore	in	the	project.	The	
action	item	will	reflect	the	current	Owner	and	Status	as	it	changes	in	Tracker.	The	title	and	
description	will	reflect	the	text	from	the	action	item.	The	Requester	is	whoever	creates	the	
action	item,	typically	the	retro	moderator.	

	


