MFullContact

| Know That Face

By: Jed Menard, Clayton Howeth,
and Patrick Nichols

For: FullContact

Date: June 24, 2016



Introduction
Who Is FullContact?

FullContact is a company striving to keep users fully connected to the people who
matter most in their lives. They achieve this by merging and managing all of their users’
contacts in their application program interface on a consumer and business level. Their
API allows users to easily query by email, phone number, twitter account, and more.
Results include publicly-available social profiles, photos, basic demographics, job titles,
and hundreds of other public data points.

Project Description

The project, named “I Know That Face,” is primarily a facial recognition and association
program. At a high level, the code had to be able to accept a picture with a face in it and
respond with the name of the person in the picture. At a more technical level, the
software had to be able to recognize a person’s face in a given picture and process it
into “eigenfaces,” a set of pictures that combined form the real face. These would be
used for comparison to other faces. A database would then be used to assign a tag to
the given face, and integrate the tagged photo into FullContact’s contact merging
software.

Requirements
Functional Requirements

To achieve these goals, the software had to attain a handful of functional requirements.
First, the code needed to be able to analyze a picture and extract faces from it. Before
any comparisons could be made, several of these faces needed to be used as a training
set from which an average face and a “facespace” would be calculated. It then needed
to be able to calculate the distance between an individual face, not an entire picture,
and the average face. Once this “difference face” had been attained, it needed to be
compared to those of the other faces in the database, using principal component
analysis, to find similarities. Finally, the software had to associate all similar faces
together in the appropriate person’s contact information.

Non-Functional Requirements

In attaining these functional requirements, the software also needed to meet some
non-functional requirements. Namely, the code had to be fairly quick and able to be
integrated into FullContact’s other software. In order to process the large number of
incoming photos, the software needed to be able to identify faces in less than a second.
After the face had been recognized, it then needed to be able to compare it to other
faces in a matter of seconds. Some peripheral calculations, such as finding the mean



face, calculating the eigenfaces, or generating the facespace, could take a considerable
amount of time. Fortunately, these calculations only need to be made once and can be
stored for later use. This cuts down on computational time by a massive amount, but
increases bootstrap time marginally.

System Architecture

The project is designed to work as a black box for finding people in a picture as seen in
Figure 1. All the user needs to know is that an image can be sent to an HTTP endpoint,
“WhoAml,” and the name of the most similar person would be returned. There are a
handful of other endpoints that provide other functionality or act as a proof of concept,
but these are not needed by the user. Behind the scenes, the WhoAml endpoint calls a
number of functional processes to compute similarities. These behind-the-scenes
processes are colored blue for the purpose of report explanation.

First of all, WhoAml uses the FaceDetector to locate a face in a picture. The
coordinates for a bounding box around the face are returned, and passed to one of the
functions in the ImgManipulation set. This function crops out the face from the picture
and resizes it to a standard size for computations. A number of other image
manipulation functions are called to break the face down to a gray-scaled version and
find a difference face, then these new images are stored in the database.

Finally, the functionality of the CompareToPeople endpoint is called to iterate through
the people and faces in the database to find the most similar match. Once this is done,
the name of the most similar match is returned to the user through the request that was
sent to the endpoint.



FaceDetector

ImgManipulation

CompareToPeople

Jack

Figure 1

The functional code of the software is shown in the Figure 2 below. The HTTP
endpoints have very little functionality written into them, and instead rely on calling
functions that are written elsewhere.

The backbone of the design is integrated in the Database class. It keeps track of
gray-scaled faces, original faces, people, and the Facespace. It can be used to
instantiate a database on a new machine, and can load, update, and store any
information that needs to be saved. When an endpoint needs to do any comparison or
storing, the database is called.

The Person class is the main data structure used to keep track of relevant information. It
contains the name of a person, an ID number in the database, and a list of the IDs of
the face images that correspond to that person in the database. It can also initialize the
mean face for that person’s faces, and have it stored in the database.



DetectObject and ImgManipulation are where the vast majority of the computational
logic is written. DetectObject contains the code to find a face, and ImgManipulation
contains the code for everything needed to compare faces. It can pre-process an image
to extract a face, prepare it for comparison, and perform the actual comparison using
principal component analysis.

WhoAmI.py
ImgManipulation
+HEIGHT: int = 600 o
WHOE St - LBo = DetectObject
+DEPTH: int = 3 ereon
- - Database +findobject(): List(x,y,w,h)

+cropScalelmage(img, x,y,w,h) +name: String +findEyes (image)
+rotateImage(1img,angle) +identifier: int +makePerson() +findFaces{1image)
+compress Image (1mg, bound) +numImgs: int +makeWeights() +findRightEye (1mage)
+imageToVector (img) +images: [] +makeFaceSpace () +find eftEye(image)
+vectorToImage (vec) +initMeanFace() T
+scalevals(vec) +initDiffFace(meanFace) !
+averageFaces (faces :Facel]) A 1
+grayFace(1img) A 1
+differenceFace(origFace, meanFace) S s s s e 1

Figure 2

Tech Design

The vast majority of the complexity of the code comes from the ImgManipulation
functions. The important functions in the collection are cropScalelmage, grayFace,
averagelmgArr, differenceFace, makeProjections, and compare.

DetectObject uses an open source library utilizing Haar Cascades to find faces. Once a
face is found from DetectObiject, the first function to be run is cropScalelmage. This
function takes the bounding box of the face that was found and the original image, and
crops the face out (Figure #3). It then scales it to a specific size for computations. Since
large pictures get incredibly computationally expensive, all faces are scaled to a size of
500x600. This is set as a global constant and can be changed easily. Once the image
has been cropped and scaled, it is returned.



Figure 3

After a face has been extracted, the corresponding gray face is calculated (Figure #4).
This is a fairly easy process, but takes a large number of computations. This is inherent
in matrix calculations as every entry has to be iterated over. For every face, the code

must run through 300,000 entries to find the average value in each pixel and a further
300,000 to store those in a new face.

Figure 4

When initializing a database on a new machine for the first time, averagelmgArr must
be called next. A large training set needs to be processed into gray faces, followed by
combining them to find the “mean face,” or the averaged pixel values of all the faces.
The individual mean face is used in calculations. If a person were to have ten saved
pictures, the program would have to make ten times the number of calculations. Using
the individual mean face in calculations reduces the computational process significantly.



Averaging a list of faces is the longest process, since it must iterate through every value
in every face in the training set, average them, and store them in a new face. However,
this only needs to be run once per database instantiation so this does not affect the
computational speed of comparisons. The individual mean face of the person shown in
Figure 4 is printed below in Figure 5.

%

Figure 5

After each individual mean face is calculated, the net mean face is calculated. This
mean face, shown in Figure 6 below, is the average face of the entire dataset. The net
mean face is used to calculate a difference face for each person. This face is a
representation of how far the face is from the net mean face and is what is ultimately
used to compare faces to one another. While this takes a reasonable amount of time to
calculate, it does not need to be saved. This is only used when calculating the
projection onto the FaceSpace, and is ultimately never used again.

Figure 6



After calculating the difference faces, the facespace is calculated. The facespace
represents the Singular Value Decomposition of the set of faces it was trained on.
Projections onto this facespace allow for the accounting of certain unique features of a
person, increasing accuracy. all the images are turned into vectors by simply taking
each row of the image and lining them into a single row. The vectors of this matrix
undergo singular value decomposition, and they form the vector space that was
previously referred to as the facespace. These rows can then be turned back into
images, creating what are referred to as “eigenfaces”. These eigenfaces are the visual
representation of each person’s uniqueness. A few of the truly haunting eigenfaces are
displayed below in Figure 7.

Figure 7

In order to compare faces, a new face is projected onto the face space composed of the
orthogonal components of the set of faces the detector was trained on. These
projections are then compared to each other using their dot product and magnitudes.



Given two vectors, a and b, #’b‘ = cos(0) where 0 is the angle between the two vectors.

This yields a value between 0 and 1. If the value is close to 1, it means the two vectors
are very close together in the face space. If the value is close to 0, it means the two
vectors are very far apart in the face space. If the projections are similar enough, it is
assumed that the original pictures are of the same face and identifying information
about the known face is returned. The projections are just the “weights” of each
person’s mean face in the dataset. These weights are stored in the database to be
compared against new faces in future comparisons.

Design Decisions
Python vs. Java

Several important design decisions were made regarding this project. Likely the most
important one was deciding on which programming language to use. Most of
FullContact’s APl is built on Java, but the computer vision library being used, OpenCV,
was very difficult to use in Java but easy to use in Python. Java unit testing is covered in
the Mines curriculum, but Python unit testing is not. It came down to a question of which
was easier, unit testing in Python, or the OpenCV native bindings in Java. A functional
Python unit test was built in twenty minutes, and at that time the Java native binding
procedure was no clearer, so a decision was made to use Python.

Storing Data

Another important design decision was made regarding the method used to store data.
A choice had to be made between storing data on disk or using SQL. Using SQL would
let the project grow better but would also be harder to implement. Storing all the data on
disk would be easier to implement, but would be slower if the project ever had to grow.
Storing the data on disk was chosen because the project was more of a proof of
concept than something that was going to go into production.

Running Locally vs. Running on a Server

The final important design decision was whether to host the project on a local machine
or to put it on a server. A local machine was familiar and easy, but it required somebody
to have the entire project on their computer to run it. A server was unfamiliar, but it
would allow a remote user to access the project. The decision was made to proceed
with a server. The unreliability of local machines coupled with the clients desire to have
the project on a server led to this decision.



Results
Stretch Goals

There were several stretch goals associated with this project that did not get completed.
The first was the lack of code that would align faces. This code would have been
valuable as it would have greatly increased that accuracy of the project. The project can
currently correctly identify a face 10% of the time according to the tests that were run.
While this is about 5 times better than random chance, it is still much less than would be
needed for the project to go into production.

Another stretch goal that did not get accomplished was the ability to compare faces in
real time. The idea was to implement a real-time video feed, most likely used by a
computer’s camera, that could box faces on screen with a name tag attached to the
box. Though this would be a very valuable and useful feature, the six week deadline
restricted the project deliverables.

Future Development

Along with the above stretch goals for the project are a few developments that could be
applied in the future to continue the facial recognition process. Once such application is
to apply the software to the entire photo database of FullContact. This would allow
people to merge their contact photos, as well as recognize a person based on a photo
passed into the FullContact API.

The next goal in the future of this project is the analysis of poor or sideways photos. The
analysis of these photos would allow the dataset to restrict bad photos being passed in.

For example, if someone had a silhouette photo of a person on a beach, the application

could recognize that there is no face in the picture, therefore refraining from adding poor
pictures to our control set.

A feature that was less than a week away of implementation, due to the six week
restriction, is the ability to add a new face passed in if it did not match any of the known
faces. A simple “Would you like to name this face?” function could quickly add this to
the project.

Unforeseen Changes

Throughout development, several things changed in the project. The most significant
was the shift from running the project on a local machine to running it on a remote
server. This took almost a week of development time, but the client was very pleased
with the results. The most valuable technical lesson learned in the development of this
project was the ability to implement and run code on a server.



Summary of Data

Accuracy data for our project was obtained using a five-fold validation technique. This is
where the software is trained on four-fifths of the pictures we had taken and the last fifth
is tested against the training set. This is repeated five times, each time using a different
fifth for testing. Once the data was collected, a full statistical analysis was performed.

The average likelihood of a correct match was only just above 10%. This is likely due to
the nature of facial recognition and the fact that our training sets had very little variation.
A number of confidence intervals, representing the range in which the true correct
match percentage can be found, were also calculated and listed below.

Furthermore, the similarity rates for both correct and incorrect matches were analyzed
individually. For each, the mean, standard deviation, variance, and three different
percentiles were calculated. On average, the correct matches were only about 5% more
similar than the incorrect matches.The incorrect matches were more widely varied than
the correct ones, but only marginally.

Data
Accuracy data:
Correct: 44
Incorrect: 395
Total: 439
Most likely probability of correct match: .1002
Confidence intervals for probability of correct match:
80% confident: (.0853, .1224)
90% confident: (.0803, .1274)
95% confident: (.0754, .1322)
99% confident: (.0665, .1412)
Mean similarity:
Correct matches: .935169
Incorrect matches: .884915
Standard deviation/variance:
Correct matches: STD: .098810, Variance: .009763
Incorrect matches: STD: .100906, Variance: .010182
Percentiles:
Correct matches:
25th percentile: .924735
50th percentile (median): .958829
75th percentile: .983548
Incorrect matches:
25th percentile: .842611
50th percentile (median): .908124
75th percentile: .961679

10



