
Data Verity Final Report

Team Data Verity #1

Griffin Ciluffo, Daniel Herman, Stephen Tracy

Client: David Flammer

21 June 2016

Contents

1 Introduction 1

2 Project Requirements 1

2.1 Functional Requirements . 1

2.2 Non-functional Requirements . 2

3 System Architecture 2

4 Technical Design 3

4.1 Upgrading to ExtJS 6 . 3

4.2 Duplicate Entity Error . 4

4.3 Scrolling Bar . 5

4.4 Mobile Dashboard . 7

4.5 Mobile Entry Panel . 8

5 Design Decisions 11

6 Results and Lessons Learned 13

6.1 Results . 13

6.2 Lessons Learned . 13

7 Conclusion 14

8 Appendix 16

8.1 Apache Cordova Process . 16

1 Introduction

Data Verity builds customized data analysis graphs and tables for its clients, allowing them to see

important data and trends. The data is gathered, analyzed, and displayed in a useful way which allows

the customer to view all important information through a desktop application. The purpose of the

project was to work with an existing code base for a mobile version of the desktop application to

make it contain all the same functionality as the desktop application. The first task was to update the

JavaScript web framework used by the app, ExtJS, which is created by the company Sencha. After

that, the display of charts and graphs had to be working, and then other features such as forms could

be implemented. Throughout the process, it was important to ensure that the mobile application’s

layout and styling was appealing and matched that of mobile applications currently on the market.

2 Project Requirements

2.1 Functional Requirements

The functional requirements of the project were to upgrade the JavaScript framework of the original

mobile application, update the mobile version to include the same functionality as the desktop version,

and add features that would serve to make the app feel like a mobile app as opposed to a desktop

app being displayed on a mobile device. Before features could be added, the JavaScript framework

had to be updated from Sencha Touch 2.3/ExtJS 2.3.1 to ExtJS 6+. After the framework upgrade

was completed, desktop features were implemented on the mobile version. One necessary feature was

ensuring charts, graphs, tables, and reports display properly on mobile devices and are easy to view, i.e.,

has touch-screen zoom functionality. Other features included implementing communications-related

forms for the user. The desktop version has forms that allow the user to send communications and a

table that tracks communications within their company; these features had to be implemented on the

1

mobile version. To keep the mobile app feeling like a mobile application, zoom and swipe functionality

also had to be implemented. Finally, once the framework was updated and the features implemented,

the application had to be deployed to iOS and Android app stores using Apache Cordova and a

document needed to be produced outlining the deployment process. The production of the document

is necessary so that Data Verity can follow the same process in the future when they make further

upgrades to the mobile application.

2.2 Non-functional Requirements

Non-functional requirements included preserving desktop functionality, using Subversion for version

control, and updating the user interface for the mobile version. While upgrading the mobile version

and adding features, it was occasionally necessary to modify files that both the mobile and desktop

versions use. However, the modifications were not allowed to disrupt the functionality of the desktop

version of the app. Additionally, Subversion had to be used for version control since Data Verity uses

subversion and the code base was given to us as three separate branches from their Subversion version

control. The final non-functional requirement was updating the appearance of the mobile version to

make it more comparable to mobile apps currently on the market. For example, the user interface had

to be mobile-friendly in appearance. The layout of the app also needed to be changed from displaying

large buttons to displaying icons in a grid, similar to many current mobile apps. Finally, charts and

graphs needed to look good on mobile devices and support zoom functionality.

3 System Architecture

The project’s architecture has a heavy back end created in PHP with a modular front end made in

JavaScript utilizing the ExtJS framework. The user logs in to their account on the mobile version and

2

sees every chart, graph, report, and form that exists on the desktop version. This is due to the fact

that the mobile version and desktop version use the same back end and gather data from the same

server. Due to the desktop version using the same back end as the mobile version, the back end was

treated as a black box that was not allowed to be changed. The application uses AJAX to make server

requests. The server responses are returned as JSON strings which had to be parsed, analyzed, and

occasionally changed in order to obtain the desired functionality on the mobile version. The user is

also able to edit the data shown by adding, deleting, or modifying the existing data. A flowchart of the

interactions between the application and the server can be seen in Figure 1 below.

Figure 1: Flowchart of System Architecture

4 Technical Design

4.1 Upgrading to ExtJS 6

The very first task was to upgrade the old mobile application to the latest version of the ExtJS

framework. The upgrade was necessary to allow the latest charting API to be implemented which is

much more robust. Sencha, the creator of ExtJS, provides detailed documentation for upgrading via

the tool Sencha Cmd. However, difficulty arose because the code base was not local; it is located on the

clients server which had to be accessed via SSH. This introduced problems because the work was done

3

in the Alamode Lab at the Colorado School of Mines where students are not allowed to freely download

and install software. After a week, most of which was spent attempting to learn the code base, the

latest versions of ExtJS 6 and Sencha Cmd were found online and uploaded to the server. By placing

the files inside of the app folder of the file structure and installing them to the server, the command

sencha app upgrade automatically updated the relevant ExtJS architecture. It was necessary to ask

the client to upgrade the servers version of the Java Development Kit, because the upgrade process

was getting interrupted due to the JDK being out of date. After the app was upgraded, most features

broke on the application. The client decided that the most important task was to get the existing

code working, as well as import the new charting API. The upgrade introduced many app-breaking

bugs which will not all be mentioned due to the fact that the bug-fixing process is similar for all bugs.

Instead, three bugs will be mentioned in the following subsections. These bugs were chosen because

they are representative of the type of bugs that were fixed throughout the project, as well as showing

the sometimes complicated and sometimes frustratingly easy nature of the fixes.

4.2 Duplicate Entity Error

One error introduced by the upgrade involved the attempted defining of already-defined models. This

error is an example of a simple fix because it could easily be isolated using the Chrome Developer

Tools which allowed for a quick fix. Unlike the old version of ExtJS, the new version does not allow

redefinition of models. This was occurring in several files: MobileActionMenu.js, MobileFieldEditor.js,

and MobileAutoPageGrid.js. The error was fixed by checking for whether or not ExtJS recognized the

class names as already being defined. An example of this fix is shown in Figure 2. It simply checks

whether or not the model is defined before proceeding to define it.

4

Figure 2: Example fix for the duplicate entity error.

4.3 Scrolling Bar

There are several table views within the app that display a grid of data. Many views have multiple

pages which make a scrolling bar and next/previous page buttons necessary for navigation. The

scrollbar at the bottom of the screen (see Figure 3) which should change the displayed page had several

issues. The first issue was that the arrows to the left and right of the scrollbar were not properly

graying out and being disabled when at the first or last page. The next issue was that once the last

page was reached, page transitions broke entirely and the table had to be refreshed to navigate again.

The last issue was that clicking or tapping on the scrollbar did not properly change the page, so a user

would have to drag the knob to get to a certain page which can be difficult when there are 500+ pages

of data.

The root of these issues was discovered in PagingToolbar.js where the functions were incomplete or

using the wrong parameters which was due to the upgrade to ExtJS 6. One ExtJS function had

incorrect logic, requiring that function to be overridden. The most interesting change came from the

function updatePageButtons which was changed to get the current page, determine whether or not the

5

page is the first or last page and disable/enable the left/right arrow keys appropriately. The parameter

changes were simply updating a line in several functions to use a different parameter in the function. In

the previous version of ExtJS, the page number was passed in; however, in ExtJS 6 the page parameter

was changed to an array of pages which is partially what broke the scrollbar. Figure 3 shows the final

scrolling bar, with proper graying out, disabling of arrow keys, and knob position. This error was not

as simple to fix because isolating it with the Chrome Developer Tools, given the complicated code

base, was almost impossible. By researching online it was discovered that the file was a plugin. The

PagingToolbar.js file was eventually found deep in the large file structure of the code base. From there,

the Chrome Developer Tools were used to show what functions were called during the execution of

certain actions and ultimately the functions were fixed.

Figure 3: Figure showing proper functioning of the scrollbars.

6

4.4 Mobile Dashboard

The mobile application has a dashboard at the top with tabs which can be selected and contain different

menu items. In the desktop view of the app, the dashboard displayed correctly. However, viewing the

app on a mobile device made these tabs disappear which is a significant functionality drop causing

only the first tab menu items to ever be displayed. It took a large amount of time to determine

how/where in the code these tabs were actually being created because there are so many different

elements to item creation sprawling across many different files. Many hours were lost trying to alter

the code in Dashboard.js where the tabs are created. However, the root issue was actually occurring in

Main.js where the Dashboard is created. After reading ExtJS documentation and forums online, it

was discovered that there is a bug within ExtJS that does not auto size the tabs correctly on mobile.

Because of this, the height has to be set manually. This could be fixed as newer ExtJS versions come

out, but for now the height is set manually to 60 pixels which gives a 10 pixel buffer to the top and

bottom of the 40 pixel tall tabs.

Additionally, once the tabs were displayed they were cut off and reaching the far right tabs on mobile

was not possible. This was fixed by adding a horizontal scrollable property during tab creation along

with the height. Figure 4 shows the application with the tabs at the top not displaying versus correctly

displaying.

7

Figure 4: Shows the tabs hidden on the mobile view as well as what the app looks like after the fix.

4.5 Mobile Entry Panel

The majority of the project consisted of ensuring stability by fixing bugs introduced after upgrading to

a new version of ExtJS as requested by the client. However, there was sufficient time at the end to add

some functionality to the mobile version that was in the desktop version. One of these features was the

Entry Panel used for communications. The desktop version can be seen in Figure 5.

8

Figure 5: Desktop version of the entry panel.

The layout of the Entry Panel in Figure 5 would not work on a mobile device due to the screen size.

Thus it was decided to translate this into a more mobile-friendly form with the entries stacked in

a scrollable column. A significant portion of the desktop code could be used for the mobile part.

Changing only a few places to access mobile classes instead of the desktop classes allowed the form to

display properly. However, the mobile classes do not use containers in the same way as the desktop

version, so none of the fields worked initially. The desktop version is able to access specific fields by

referencing HTML Div Tags set by the container, but the mobile version needed to get the fields by

name since it does not use the same container scheme. After stepping through the desktop version

in the debugger, the name of each field was acquired and the various areas where fields were being

accessed were changed to access fields by their name. The code controlling what happens when the

various checkboxes are toggled had to be changed as well. These functions have a specific order for

displaying other fields which can be seen in Figure 6.

9

Figure 6: Shows the flow of displaying fields based on checkbox statuses.

For this flow to work on the mobile version, all of the hidden fields are created and then hidden. This

is necessary because the desktop side hides fields based on a property that does not exist for the mobile

version. The toggle functions for each checkbox call each successive toggle level each time a check box

is checked. This allows for the application to keep track of which fields are ’displayed’ even when the

parent field is hidden. For example, the application will remember that the reminder field is being

displayed (but will not actually display it) even if the calender field is hidden. There are checks within

the functions for previous levels, so if all boxes are checked and then the first checkbox is unchecked,

everything will hide.

The final technical challenge of implementing the Entry Panel on the mobile side was loading the store

of names that the very first field pulls from (see Figure 7). On the desktop side, the information is

pulled only when the dropdown field is opened for selection. The purpose of this is to save resources

when first loading the page. However, the mobile checkboxes for ExtJS do not allow interaction if there

is no initial store of data, so clicking on the field to pull information is not a feasible option. Thus the

code had to be altered in one of the store loading files to check if the field was mobile and, if it is, set

the store to be loaded upon entering the panel. This slows down the mobile application slightly, but

currently there is no workaround due to the nature of the checkboxes for the mobile version.

10

Figure 7: Final version of the Mobile Entry Panel.

5 Design Decisions

Several important design decisions were made based on various factors. These decisions include the

form layout, dealing with a text field not displaying properly, opening the default number pad on a

phone, zoom functionality, and opening reports in a separate window. The first major design decision

was deciding not to change the layout of forms from the default layout. This decision was made

because the default layout works for mobile so there isnt a convincing reason to change it. Additionally,

updating the forms so they match or are similar to the layout of forms on the desktop version would

appear packed on the small screen of a mobile device.

11

While the packed screen could be fixed by implementing zoom functionality, it was decided to not

implement mobile pinch-zoom functionality. This decision was made primarily due to the fact that

the ExtJS 6 framework does not natively allow for this particular feature, which would mean the only

way to get the zoom functionality working would be to open the forms, charts, etc. in a new window.

This option was decided against because the client did not want a multitude of new windows being

opened for so many features. Opening many windows would lead to frustrating clutter the user would

have to deal with. The feature of the app that displays reports to the user implements the method of

opening a new window which does produce the desired zoom functionality. Given more time, there

would have been a greater focus on implementing zoom functionality in some way other than opening

new windows since it is so important to mobile applications.

Another design decision was changing the background color of a popup that appears when the user is

locked out of the app. The background color change was necessary because the password text field

did not display a border, making it impossible to tell there was a text field there without randomly

tapping on the screen. Due to what is most likely a bug within the ExtJS framework itself, the border

could not be displayed for a password field, regardless of setting the necessary properties; changing the

color of the background was the only feasible way to make the text field obvious.

With the upgrade to ExtJS, the theme for the mobile app was updated which helped make the app

more visually appealing. Due to the updated theme, time constraints, and unforeseen complications

with updating the layout, the current app layout was determined to be sufficient. This resulted in the

decision to not update the layout of the app to be more similar to current mobile apps on the market.

Finally, the mobile app prior to the ExtJS 6 framework update opened a number pad for entering

numbers into a number field. The code for the number pad was third-party code that did not work

with ExtJS 6. Rather than attempting to implement an updated version of the number pad, the

decision was made to simply change the type of the field to open the mobile devices default keyboard

for entering numbers. This decision was partly due to the fact that the best fix to get a number pad

12

opened up the telephone keyboard on mobile phones, which did not have a decimal point key that

could be used for entering decimals.

6 Results and Lessons Learned

6.1 Results

After the upgrade to ExtJS 6, the mobile application runs faster and smoother. The user interface is

more responsive. Additionally, the upgrade changed the theme of the app, making it more visually

appealing. The loading icon was also changed to an icon which places less of a load on the system,

further speeding up the loading process of the home page. While no in-depth testing was done of the

application due to time constraints and the complexity of the application, results from performing

certain actions on the mobile app were compared to results from performing the same actions on the

desktop version to ensure functionality was the same. Throughout the process, the client also gave

feedback to help keep the project on track and make sure all features were working as intended.

Future work that there was not enough time to do includes adding pinch-zoom functionality for mobile

devices, updating the layout of the app itself to be more like a typical mobile application, and updating

the layout of entry forms to be more visually interesting and user-friendly as opposed to the current

layout which can be seen in Figure 7.

6.2 Lessons Learned

This project taught some valuable skills that can be applied to any web programming project. The

major skill developed was using the Chrome Developer Tools. Without these tools, it would be almost

impossible to find where code is breaking in a language like JavaScript that does not follow linear code

execution. Utilizing breakpoints to step through code and see the current state of function calls and the

13

contents of variables was necessary, as well as the various listeners available, e.g., mouse click listeners.

The HTML element selector helped with debugging UI issues by displaying the HTML code for any

element the mouse cursor hovered over. The tools network activity panel helped with debugging back

end issues such as server requests and empty responses by comparing the broken communications with

working ones to identify issues.

Learning to use the ExtJS documentation was immensely important in finding what changed after

the upgrade of the framework. Navigating documentation and applying what was found to observed

behavior is a skill that can be used with any framework.

Becoming acquainted with JavaScript object declarations and how they are used in the code base was

difficult but important due to how different JavaScript is from most languages. Additionally, since

this application has a heavy back end, learning to modify and parse JSON responses was crucial to

understanding what was going on with server requests and locating specific lines of code where things

on the front end were breaking. Lastly, being patient is a good skill for debugging any application.

Bug fixing is not always a smooth process, especially if you are dealing with a large code base that

is unfamiliar. Its good to take breaks often and not be so serious otherwise debugging will be a very

frustrating process.

7 Conclusion

Overall, the project was successful and the client was satisfied with the end result. It was not expected

that the upgrade to the framework would break a large chunk of the code base, but adapting to

such conditions is important in being a professional programmer. After discussing what the upgrade

did to the system, the client expressed the most interest in correcting what was broken rather than

implementing new features right away. Finding bugs and fixing them was a fairly slow process due to

the unfamiliar code base and not knowing the framework or Chrome Developer Tools, but the team

14

grew very comfortable with the file structure toward the end of the project. The upgrade did allow the

new charting API to be imported, which is a vast improvement to the existing charts. The experience

gained from this project is invaluable to the careers of each team member.

15

8 Appendix

8.1 Apache Cordova Process

Note that the deployment process is only from experience deploying the app to Android using Apache

Cordova due to software limitations on the Mac that was used, making it impossible to attempt

deploying the app to iOS as well.

1. Ensure the latest version of Cordova is installed.

2. Run the command ’cordova create test’ from the mobile app’s root directory (e.g., mobiledev/

for this project), where test is a directory name. The name does not matter.

3. Change into the directory created via the above command.

4. Run the command ’cordova platform add android –save’ and ’cordova platform add ios –save’ to

add iOS and Android platforms.

5. Run the command ’cordova requirements’ and ensure all requirements are met for each platform.

Cordova lists the steps to be followed. For Android, go to the Android SDK Manager and make

sure that all the necessary API’s are installed. Cordova will tell which API’s are needed.

6. Run the command ’cordova build’.

7. Ensure that an AVD is installed for emulating the Android application. It may be necessary to

set one up using the AVD Manager.

8. Run the command ’cordova emulate android’ to open the emulation for the Android application.

9. Once the ’cordova emulate android’ command has run, it is necessary to run ’cordova emulate’ in

order to emulate the app itself.

16

	Introduction
	Project Requirements
	Functional Requirements
	Non-functional Requirements

	System Architecture
	Technical Design
	Upgrading to ExtJS 6
	Duplicate Entity Error
	Scrolling Bar
	Mobile Dashboard
	Mobile Entry Panel

	Design Decisions
	Results and Lessons Learned
	Results
	Lessons Learned

	Conclusion
	Appendix
	Apache Cordova Process

