CPW AutoGrader

CSCI 370 Field Session 2016
June 20, 2016

Client:
Christopher Painter-Wakefield

Authors:
Michael Bartlett
Harry Krantz
Eric Olson
Chris Rice
Caleb Willkomm

Table of Contents

Introduction

Requirements

System Architecture

Technical Design
Testing Tool:
Progress Bar:
Improved user experience:
Admin Interface:

Decisions
Framework: Ruby on Rails
Usage of ACE Code editor:
Code Saving/Uploading:
Inclusion of Admin GUI:
Login required immediately upon accessing to site:
Single-page responsive layout:
Visual Feedback of Test Results:

Results

Appendix
Deployment Guide

Known Issues

10

11

11

12

Introduction

Our client was Christopher Painter-Wakefield, hereafter referred to as CPW, from the Colorado
School of Mines. He tasked us with creating a website for use in the Data Structures class he
teaches. CPW had been using a bare bones prototype website which lacked many components
and functionality that he desired. The prototype website gave students a problem description for
which they would have to write code in an external editor and then upload a file to test its
functionality. Any edits or corrections to the code required the file to be uploaded again to test.
Then the students would upload the same file to the Blackboard website for grading, where
either CPW or a teaching assistant would have to download the file and upload it to the first
website and test its functionality again to determine each student’s grades.

In creating the new website, CPW wished to have a single location where students could read
the problem description, write the code, test it, and submit it for grading. He requested that the
grading process be simplified by having the website calculate and record the students’ grades,
which could then be automatically sent to Blackboard or be easily downloaded as a spreadsheet
or csv file.

Requirements

The project has two main parts: grading software that executes tests on submitted code and a
web interface that allows students to interact with the grading software.

The requirements for the grading software are as follows:
e Ability to execute tests on submitted code
e Results generated for each test
e Runs tests in a way that can’t modify system
e Connects to web interface
The requirements for the web interface are as follows:
Student login
Grader/Instructor login
Ability to select lab to work on
Text editor to edit code in browser
Ability to save partially completed code for later
Description of lab requirements
Ability for instructor to create/modify/delete labs

Non-Functional Requirements:

Single, responsive web page that holds all assignments/descriptions
Identifies users through their multipass account

Passes the user’s code into a chroot jail for execution

Creates a database/stores users results on each assignment

System Architecture

A high level view of the system is shown in figure 1. The basis for all operations is the
Rails server which is running under Apache. When a user logs in to the website the Rails server
will redirect the user to the Mines Multipass server which upon a successful login will redirect
the user back to the website and send corresponding info about the user to the Rails server.
The Rails server manages a Postgres database which stores all the data for the website
including users, grades, labs, and assignments. The Testing Tool is also running on the server
but runs separately from Rails. When a user submits their code to be tested the Rails server
executes the command to run the Testing Tool which upon completion returns the results of the
test to the Rails Server.

new

User
Testing Tool q ; authentication MultiPass Server
{refactored frgm existing) RalIS Se Ve ’ (S hlbboleth)

Postgres DB

Figure 1

Technical Design

Testing Tool:

We decided that the testing tool was a large enough piece of the project that it didn’t
really need to be linked in with the Rails framework. We decided to make the testing tool a
standalone command line application. By not having to access the testing tool through the web
interface made it much easier to debug and to develop.

Test File Path
Source File Path Testing Tool JSON Test Report

Common Directory Path

Figure 2: High level view of testing tool

The testing tool uses chroot to create a secure testing environment for the user’s code.
This ensures they cannot delete anything or mess with the server at all. Also, the code is not run
as a super-user so they should not be able to execute any code that could break the server.

Progress Bar:

The progress bar is the primary method for the program to tell the user what their code
did. If the code executed successfully, the progress bar will display the results of the unit tests,
along with inputs, outputs, and expected values in a popover as shown in figure 3. If the test
results are too large for the popover, you can click the bar and it will show a modal view with the
full test results as in figure 4. Additionally, any compiler, runtime, and timeout errors will show up
on the progress bar as in figure 5 and more detailed error reports are also accessible by clicking
on the bar as in figure 6.

Test Results

Passed Test -
DigitSum Editor el E S B & &

LAy Lnput: 123456
plde Output: 21

Problem Statement

Given a number, return the sum of the digits in the
number.

Write the function digit_sum that calculates and
returns the sum of digits in its parameter number .

Figure 3

Input: 55
Actual: "
Expected: "55 166 83 250 125 376 188 94 47 142 71 214 107 322 161 484

242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526
263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132
566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858
2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308
1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35
106 53 160 80 40 20 10 5 16 8 4 2 1"

Figure 4

Test Results

DigitSum Editor E 2 R » »

Problem Statement

Given a number, return the sum of the digits in the
number.

Write the function digit_sum that calculates and
returns the sum of digits in its parameter number .

Compilation Error

In file included from tests.cpp:4:0:

solution.cpp:7:10: warning: missing terminating " character
return a"ns;

solution.cpp:7:2: error: missing terminating " character
return a"ns;

solution.cpp: In function 'int digit_sum(int)':
solution.cpp:7:9: error: 'a' was not declared in this scope
return a"ns;

solution.cpp:B:1: error: expected ';' before '}' token

Figure 6

Improved user experience:

We designed the website with a modern clean appearance made possible with
Bootstrap, shown in figure 7. At the top the page is the navigation bar from which the students
can access info about the class. The assignment page, shown below, features the progress bar
on top, the description panel on the left and the code editor in its own panel on the right.

The description for each problem features full html and allows custom formatting and
image support. If the description is too long to fit in the panel it will automatically add scrolling.
At the bottom of this panel are the “Test” and “Submit” buttons. The “Test” button will run the
functionality tests on the code and update the progress bar. The “Submit” button will test the
code and then record the student’s grade. The database will only be updated if the new score is
better than the student’s existing.

The code editor includes syntax highlighting to make reading and writing code easier. At
the upper right hand corner of the editor panel are several buttons for editing functions. These
include buttons(from left to right) to reset the code to the original template, refresh the code to
what has been saved, save the code, upload code from a file, and download the current code.

AutoGrader Admin Policies Assignments Resources Help Harrison Krantz ~
"

Q
X
2
Q?

DigitSum Editor]

1~ int digit_sum(int number) {
2 // fill in code here
B}
Problem 4
Statement

Given a number, return the sum of the
digits in the number.

Write the function digit_sum that
calculates and returns the sum of digits
in its parameter number .

Constraints

« number is greater than or equal to
0

Examples

81
Returns: 9
8+1=9

1075
Returns: 13
10+ 7+ 5 =113

Test Submit

Figure 7

Admin Interface:

The admin interface includes extensive control over the website. From the admin menu
grades can be viewed and exported as a csv(figure 8). Individual assignments can be created,
edited, and deleted from the admin menu(figure 9-10). Labs can also be created, edited, and
deleted. The labs and assignments exist independently so they can be managed easily;
assignments can be added or removed from labs without actually deleting and recreating them.
Labs also feature due dates and the ability the hide them from the students view. In addition to
the full admin privileges there is a teaching assistant user role which includes the ability to view
grades but no other admin privileges.

Auto Grader Admin

NAVIGATION

Assignments

| List of Grades

Labs Dashboard / Grades
Statics
2= List + Add new @ Export
Users
Filter < Refresh = %
O M Score User Assignment
) 4 0 Caleb Willkomm DigitSum
18 10 Michael Bartlett DigitSum
@ = 10 Christopher Rice DigitSum
i 4 10 Eric Olson DigitSum
4 grades
Figure 8

Auto Grader Admin

NAVIGATION

List of Assignments

Grades
Labs Dashboard / Assignments
Statics
i= List + Add new
Users
Filter
1 Id Description
14 -
D13 -
2
1" -
~ 8 -
—~ 7 -
6 -
-5 -
~ 4 -

ik <h2>Problem Statem...

10 assignments

@ Export

< Refresh x

Name

Encryption
MemberCheck
Tourney

Nesting
ContinuedFractions
GommonGount
Hailstone

CGRatio
GCountAppearances

DigitSum

Lab

Lab 2
Lab 2
Lab 2
Lab 2
Lab 1
Lab 1
Lab 1
Lab 1

Lab 1

Dashboard

Created at

June 20, 2016 13:02
June 20, 2016 12:04
June 20, 2016 06:36

June 18, 2016 18:43

Home

E hkrantz@mines.edu

Add filter =

Selected items ~

Export found Grades

Updated at

June 20, 2016 13:02
June 20, 2016 12:04
June 20, 2016 06:36

June 18, 2016 18:43

Dashboard

Created at

June 20, 2016 11:09
June 20, 2016 11:09
June 20, 2016 11:09
June 20, 2016 11:08
June 20, 2016 10:43
June 20, 2016 10:42
June 20, 2016 10:42
June 20, 2016 10:42

June 20, 2016 10:42

Demo Lab June 17, 2016 13:29

Figure 9

Home

Add filter ~

E hkrantz@mines.edu

@ e e e

%,

%N

%

X X x X

Selected items ~

Export found Assignments

Updated at

June 20, 2016 12:06
June 20, 2016 12:06
June 20, 2016 12:06
June 20, 2016 12:06
June 20, 2016 10:43
June 20, 2016 10:42
June 20, 2016 10:42
June 20, 2016 10:42
June 20, 2016 10:42

June 20, 2016 10:50

@ 2 2 Q@ @ @ ¢ e e

LAY

S % 8N
X X X X X X X X x| x

LY

LAY

6 66 6 6 6 6 6 6 6

Auto Grader Admin Dashboard Home m hkrantz@mines.edu =T

NAVIGATION

Edit Assignment 'DigitSum’
Grades
Labs Dashboard / Assignments / DigitSum / Edit

Statics

© Show & Edit % Delete @ Show in app
Users

Name DigitSum
Required.
Lab Demo Lab
Optional.
Description [Source ® B @ ™~ E O MmE O
i= = o9 W = E =E E
Styles - Format - Font - Size v| A- 3~ B I U S x x 15

Problem Statement

Given a number, return the sum of the digits in the number.

Write the function digit_sum that calculates and returns the sum of digits in its parameter number.
Constraints

* number is greater than or equal to 0

Figure 10

Decisions

Framework: Ruby on Rails

Our first major decision was the choice of what framework to build the website with. Our
client gave us free reign over what to use and from the many different frameworks out there, our
team chose to use Ruby on Rails. We did this because three of our five members already had
experience with Ruby. In addition there exists a lot of open source code for Ruby and Rails that
we were able to pull from to complete the website.

Usage of ACE Code editor:

We chose to include the ACE code editor in the website because we needed a code
editor for students to use and ACE is an extensive, open source and highly customizable
resource. It features syntax highlighting for C++ and customizable visual themes. Ace also
proved to be easy to integrate into the website without additional changes.

Code Saving/Uploading:

Code saving, uploading and downloading are features we felt that the students would
very much appreciate. Since all of our members had taken this class before, we know how
useful it would have been to have all our code stored in one easy to access place and thus
chose to include it.

Inclusion of Admin GUI:;

An admin interface is something that would save so much time, it was impossible to
overlook. This would allow CPW and TA'’s to have easy access to all the grades of their
students and allow for easy creation of new assignments. This will be a massive improvement
from the old system which required access to the server.

Login required immediately upon accessing to site:

A login system linked to the School of Mines account system was included out of
necessity. Our website allows students to run arbitrary code on a computer inside the school’s
network and this is one of our security measures to prevent malicious attacks. This also creates
unique accounts for the students in the class and enables grades to be easily recorded for the
students.

Single-page responsive layout:

Having a responsive layout was a requirement from our client but this also forced us to
maintain a simple design layout and improved the overall feel of the website. As a feature of
using Bootstrap the website is mobile friendly and one could even write code on a smartphone,
if you were feeling masochistic enough.

Visual Feedback of Test Results:

This was a remnant of CPW’s old site that we expanded upon into the fully featured
progress bar. This allows students to immediately see the results of their code and the input and
output of each individual test. The progress bar is an important feature of the website and we
decided to spend a lot of time with it in order to include all the features we felt were necessary
such as test feedback, error handling, and full test reports.

Results

We were able to make a fully functioning website inline with the requirements given to us by
CPW. Students can write and save code for each assignment, can test that code on the website
with immediate feedback, and then submit that code for grading. CPW and TA'’s can easily
access grades and have an interface for creating new assignments and modifying old ones.
This website works across all modern browsers and also functions on smartphones and tablets.

However, there were some features that we wished to have but were unable due to time
restraints. Some of these were: easter eggs/fanfare upon successful execution of all tests,
integrating with the School of Mines grade storage service, and modifying some parameters for
assignments has to be done through a file system rather than through the website. As far as
improvements that could be added to this website: the above mentioned features could be
implemented, expanding the website to cover several courses, and creating error highlighting
and basic autocompletion inside the code editor. Throughout the project we learned several
things: how to make a Ruby application, website development on PC can be difficult due to
Ruby and Rails assuming a unix working environment, website styling using bootstrap, and
creating unit tests in C++ is difficult to do.

10

Appendix

Deployment Guide

1. Clone project from git repository or source

(https://qgithub.com/eric-olson/AutoGrader.qit)

2. Install ruby and rails

a.
b.

The guide we used is here: https://gorails.com/setup/ubuntu/16.04
Skip the git and MySQL sections

3. Set up configuration files (examples are provided in same folder)

a.
b.

server/config/database.yml: Input database user/pass
server/config/secrets.yml: run ‘rake secret’ and copy the result into the
production field
server/config/test_tool.yml: Update fields with appropriate paths

i. Use “which ruby to find ruby path

4. Set up passenger with apache

a.

https://www.phusionpassenger.com/library/walkthroughs/deploy/ruby/ownserver/

apache/oss/trusty/install passenger.html

The guide above handles most of the installation, although you will need to use
the appropriate Ubuntu version when installing from APT (16.04 is ‘xenial’ instead
of ‘trusty’)

There is an example grader.conf file in the root directory of the project repository.
This should be copied to ‘/etc/apache2/sites-available/’ and the server name
should be updated along with the SSL certificate file locations

5. Set up mod_shib

a.

b
c.
d

This is done in the file located at “/etc/apache2/conf-available/shib.conf’

There is an example shib.conf file located in the root directory of the project
Once the file is copied/created, run “sudo a2enconf shib

Ensure that shibboleth config is correct for mines IDP, especially the
attribute-map.xml file in “/etc/shibboleth/". The application needs to have access
to the displayName, mail, and uid attributes.

6. Rails project setup

a.
b.

Run “bundle install --deployment’ in server directory
Run ‘rake db:migrate RAILS _ENV="production™ in server directory

11

https://github.com/eric-olson/AutoGrader.git
https://gorails.com/setup/ubuntu/16.04
https://gorails.com/setup/ubuntu/16.04
https://www.phusionpassenger.com/library/walkthroughs/deploy/ruby/ownserver/apache/oss/trusty/install_passenger.html
https://www.phusionpassenger.com/library/walkthroughs/deploy/ruby/ownserver/apache/oss/trusty/install_passenger.html

7. Test Tool Setup

a. Copy ‘server/config/test_tool_default.yml’ to ‘server/config/test_tool.yml’ and

update the configuration values for the environment

Vi.

home_path: The top level directory of AutoGrader (The directory where
server, testing_tool, problems, ... reside)

testing_tool_script: Either ‘testing_tool/test_tool.rb’ or
‘testing_tool/test_tool_mock.rb’ for normal operation or debugging,
respectively.

ruby_executable: This is the executable that the server uses to run the
testing tool. It must be the one with sudo access or else the testing tool
will not be able to enter the secure environment. Usually this will be the
executable in ‘/usr/bin/’ (more about that in the authentication instructions
assignments_relative_path: The path relative to home_path where all of
the assignments are stored. In our repo the directory is named ‘problems’
users_relative_path: The path relative to home_path where all of the
user code will be stored. In our repo the directory is named ‘users’
common_relative_path: The path relative to home_path where the test

environment files are. In our repo the directory is named ‘common’

b. Installing Stanford CPP Library:

Download the library

Copy the contents of the ‘include’ directory in the library folder to
‘lusr/local/include/Stanford CPPLib’

Copy ‘lib/StanfordCPPLib.a’ in the library folder to
‘lusr/local/lib/StanfordCPPLib’, making sure that the file is compiled for
your version of linux/ubuntu.

c. Installing Google Test

Run ‘sudo apt-get install libgtest-dev cmake’
Build gtest from source:

1. cd /usr/src/gtest

2. sudo cmake .

3. sudo make

4. mkdir /usr/local/lib/gtest

5. sudo cp *.a /usr/local/lib/gtest

d. Authenticating the ruby executable:

12

i. You must provide the ruby executable specified in
‘server/config/test_tool.yml’ with superuser access. The ruby executable
must be owned by root or else it will not have superuser access.

i. Do this with: sudo setcap cap_sys_chroot+ep <ruby_executable>

1. For example: sudo setcap cap_sys_chroot+ep /usr/bin/ruby2.3
8. Add admin user
a. ‘rails ¢ production® from server directory
b. “User.all’, find ID

c. 'User.find(1).update(role:’admin”)” where 1 is the User ID found earlier

Known Issues

e \When connecting to the website via the secure.mines.edu browser portal a warning is
shown stating “The certificate was not issued by a trusted certificate authority”. You can
still login to the website but attempting to test code results in a server error.

13

