
CSCI 370, Summer 2012
FullContact

NLP / Information Extraction

Ryan Lewellen, Jason Lingle, Steven Ruppert

June 2012

1



1 Introduction

FullContact is a Denver-based startup specialising in extraction and aggrega-
tion of personal contact information. Their flagship product provides users
with an address book system which automatically enriches, deduplicates, and
updates entries originally added by each user.

FullContact has commissioned our team to develop a system which ex-
tracts personal contact information from user-supplied Internet mail mes-
sages. For example, given a MIME-format message with the content

...

From: Alice Adams <aadams@acme.com>

To: Bob Brown <bob@example.org>

...

Hi Bob,

Attached is the invoice of the product you ordered.

Alice Adams

Sales Manager, ACME, Inc.

+1 800 123 4567

we should ideally extract the following information:

Given name: Alice

Family name: Adams

Email address: aadams@acme.com

Position: Sales Manager

Company: ACME, Inc

Phone number: +1 800 123 4567

2



2 Requirements

2.1 Functional

The software system must take a MIME-format mail message, as a string or
a Mime4J object, process it, and return a Contact object containing what
information could be extracted.

If possible in the allotted time, the software should present itself as a
REST API.

2.2 Non-Functional

The software system must be written in a language that runs on the Java Vir-
tual Machine, preferably Groovy, Clojure, or Java, in that order of preference.
Other JVM-based languages, such as Scala, are permissible but discouraged.
The build process and dependencies must be managed by Gradle. The main
part of the software must make no assumptions about the underlying oper-
ating system or environment.

The data extraction process for an average message must take fewer than
250 milliseconds of real time on a typical computing system. This perfor-
mance requirement excludes any pre-process initialisation which occurs one
time, before or when the first message is processed.

The types of data which should be extracted are as follows, in order
of decreasing priority: Names (given and family), email addresses, phone
numbers, physical addresses, social media data (such as Twitter handles,
LinkedIn profiles, etc.) companies, positions, honourific prefixes and suffixes.

Data extraction should be optimised for precision rather than recall. That
is, it should favour the correctness of its returned data over the quantity of
the data; it is preferable that the user need to manually enter data than have
to worry about whether the extracted data could be wrong.

Linguistic structure permitting, the data extraction system must function
for non-English locales as well as English. This includes proper handling of
non-ASCII characters, accounting for character encodings and email clients
which have broken encoders, and support of non-American systems, such as
phone number and physical address formats.

In order to facilitate scalability, the software should be parallelisable, at
least able to run independent jobs simultaneously.

3



ContactEmail Parsing

Textual signature extraction

HTML signature extraction

Tokenisation Data extraction Data filtering

Figure 1: Overall architecture of the software system.

3 System Architecture

Due to the narrow purpose of this project, the higher-level architecture is
quite simple. Reference figure 1 for a process diagramme.

Input to the system is provided in the form of a MIME message, either
as a string or as an Apache Mime4j Message object. In the case of a string,
the message is converted to a Message object implicitly.

Once a message has been obtained, the parser will then extract the text
and html bodies (if present). The HTML section, if present, will be sanitised
using HTML cleaner. If no text section is present, then it will be constructed
from the HTML section by stripping any and all tags.

Any hint-able contact information is also extracted from the MIME mes-
sage headers; this information includes the person’s name (if specified) as
well as any email addresses that are specified in the From header as well as
the Reply-To header.

Given the text/html bodies of the message, the system will then attempt
to determine which portion of each body is considered the signature of the
message, so that the data extractor does not have to sift through the whole
message to get at the contact information.

The extracted signature is passed on to the tokenisation system. The
tokeniser not only separates word-like pieces from each other, but also at-
tempts to deduce a certain tree-like structure from its input. In the case of
text, this structure is defined by the hard line breaks contained; for HTML,
it is simply the hierarchy of nodes.

The resulting tokens are then passed to the data extraction system, which
is responsible for searching for contact data within the signature. The data
extraction system is divided into a group of data extractor sets. Each data
extractor set is responsible for setting the entry for extracted contact data
and for reconciling multiple results. A data extractor set consists of multiple
data extractors, each of which can extract data of the appropriate type and

4



DataExtractorSet DataExtractor

TokenTree EmailParser

FirstNameExtractorSet

LastNameExtractorSet

PhoneNumberExtractorSet

EmailExtractorSet

AddressExtractorSet

BlockSearch SignatureExtractor

Figure 2: Upper-level classes of the Software System and the primary rela-
tions between them.

estimate the certainty of the correctness of such results.
After data extraction completes, the software takes a second holistic look

at the extracted contact data to check for certain types of errors. For exam-
ple, in certain poorly-formated documents, it is possible to pick up the same
word for both given and family names; this indicates that the contact’s name
is not reliably known and that the name should be removed.

4 Technical Design

Our software is, as a whole, laid out in a tree structure, each part performing
some work and delegating the rest to subordinate objects, with the number
of cross edges minimised. Figure 2 shows the hierarchy of responsibility, and
figure 3 illustrates the flow of data between the components.

The root of the API is the EmailParser class, which handles decod-
ing/cleaning of email messages, as well as invoking the signature extractor,
tokeniser, data extractor, and post-extraction filters.

The SignatureExtractor (implemented by BlockSearch) has the sole
responsibility of identifying the signature in a given mail message, when
possible. It handles both text and HTML signature extraction, since the two
are necessarily similar and partially interdependent.

TokenTree is used to convert disparate input types, such as plaintext,
HTML, or a DOM node, into a uniform data structure used by the data
extraction system.

DataExtractor itself does very little. It simply contains a number of

5



API input email parser
MIME message

signature extractor

hint message parts

general data extractor

hint

text signature extractor

text part

HTML signature extractor

HTML part tokeniser

extracted signaturetext signature

text signature

HTML signature

stripped HTML

post-processing filters

signature tokens

signature tokens

API output

extracted contact data

unfiltered contact data

specific data extractor sets

signature+hint reconciled data

specific data extractors

signature+hintpotential data

Figure 3: Components of the Software System and the flow of data between
them. Items have been consolidated and/or separated to increase clarity.
Multiple edges used for simple data forwarding have been joined into cross
edges.

6



DataExtractorSets, each of which it calls in sequence to extract each data
set, and to perform post-extraction filtering.

Each DataExtractorSet subclass, like DataExtractor, functions primar-
ily as a container delegating most of its work to the contained Extractors
(not shown in the figures above). It also defines the logic to write the ex-
tracted data into a Contact object, as well as how to reconcile multiple
disagreeing extracted data.

The Extractor subclasses are the lowest-level in the hierarchy. Each
defines a method of extracting data from a signature or from provided hints
and to determine the certainty that each datum is correct.

5 Design & Implementation Decisions

Our first design decision was the primary language in which to implement
the system. Confined to the Java Virtual Machine, we chose the Groovy
language, because it remained close to the traditional Java syntax, while
being considerably less verbose and supporting additional features like clo-
sures, array literals, and run-time dynamic metaprogramming. Other JVM
languages such as Scala, JRuby, and Clojure were considered but were not
used because using Groovy enabled us to build on developer knowledge from
the rest of FullContact, who use Groovy extensively.

Our system was compiled and built by Gradle, a Groovy-based build
system. Gradle has an ease-of-use advantage over similar Java build systems
like Maven and Ant, while still being accessible from the command line as
opposed to a build system integrated in an IDE such as Eclipse. However,
the long startup times of Gradle proved an annoyance during development.

When researching methods of extracting contact information from emails,
we found several research papers on the subject, detailing the methods used.
A paper from Microsoft Research described a machine-learning approach
to extracting the signature blocks from emails, using a Java-based machine
learning library (MinorThird). We opted instead for a heuristic-based ap-
proach, due to the time constraints of the project and the time required to
deliver partially-finished but working software during Scrum sprints.

This method involved first attempting to find what we consider the sig-
nature in the message, and then running a second step to extract all of the
contact information from this extracted signature. This made it easy to sep-
arate concerns of making sure that we have the correct contact information

7



and finding the information in the unstructured docuent.
The scheme for signature extraction involves first segmenting the text into

what we refer to as ”blocks” - these are segents of text that are separated
by non-content lines, which consist of empty lines or lines containing only
a single, repeated character. This simple heuristic does a very good job of
separating a person’s signature from other parts of the email, such as the
actual body of the message.

To choose which of these blocks represented the signature, we assigned
each block a score based on the presence of certain “features”; we gave posi-
tive scores for things like the users’ first name, last name, and email address,
and negative scores for things like the presence of the recipient’s name/email,
presence of MIME headers, and indicators of reply chains.

This works fairly decently, but sometimes people do weird things with
their signatures, such as double spacing their signature, or putting their
signature into two or more adjacent blocks. By adding some block refinement
heuristics, we were able to deal with these issues.

Data field extraction (emails, names, etc) were also handled with a heuris-
tic approach. While an AI-based machine-learning approach might have
higher accuracy in the long run, we again opted for a primarily regular
expression-based approach to minimize iteration time. However, to enable
the product to scale as the test data corpus and accuracy requirements grow,
we designed both the signature extraction and data extraction interfaces to
facilitate switching to an AI approach when a sufficient training corpus can
be built.

Name extraction has by far the most extraction methods, and was also
the most difficult to get to work precisely. Originally, we used only a Markov
model to determine the most name-looking items; however, this had precision
of around 30%. We since added ways to extract names based on common
patterns within signatures, the display name provided in the MIME headers,
as well as deducing it from common email address formats.

Email address and phone number extraction in many ways work simi-
larly. Each has two primary extraction methods: One uses a simple pattern
that will find most data, but with lower certainty; another uses a more com-
prehensive check against known common formats and yields much higher
certainty. In particular, we compiled a list of common phone number pat-
terns for nearly every major country. Email addresses may also be extracted
from the MIME headers, a very reliable method which usually outperforms
signature-based extraction.

8



Physical addresses are the hardest to extract (though not the hardest
to make correct, which falls to names), due to the varying and non-specific
formating and the great number of corner-cases. American-format addresses,
also used in Canada and Singapore, are the easiest to work with, since they
begin with a house number and end with a postal code, possibly followed
by a country. European-format addresses (used in many parts of the world),
which place the postal code before the city and may place the house number
on either side of the street name, were significantly more difficult. Only
a minority of such addresses are located successfully using our methods.
We were never able to determine an effective method of identifying Indian-
format addresses which did not involve obtaining a massive list of known
city/municipality pairs.

Early in the project, we realized that being able to easily run the system
against test data and get summary metrics on the performance of the system
would be extremely valuable, both for developer feedback and as a visually
accessible product of the programmatic API. We thus created a number of
supporting Groovy classes to load structured, human-generated test data,
run the original email against the system, and report the results of the ex-
traction. Because this testing takes a fairly long time (about two minutes on
a netbook with 1GB of RAM), we separated the script that runs our tests,
so the short-running unit tests can be run separately from the accuracy or
“integration” tests.

We decided to store our test data in a JSON format, with the original
MIME email as a string in a ”notes” field. This rather unintuitive struc-
ture is an artifact of our use of an existing API to convert the JSON into
FullContact’s internal Contact data structure.

However, we ran into problems using the JsonSlurper JSON-parsing
class in Groovy’s standard library to parse our test data into a native Groovy
data structures. Because the JsonSlurper implementation uses Java JDK’s
Regular Expression implementation to validate JSON format, our test data
triggered a bug where the alternation within the regular expression would
lead to a StackOverflowException when JSON strings were greater than
a certain width; the original MIME-formatted messages stored in the JSON
often triggered this.

To work around this, we developed a more efficient and functionally equiv-
alent class JsonDiner that was able to parse our test data into Groovy data
structures without any problems. The class is written in Java for higher
performance, and is checked into the version control with the rest of the

9



project, along with its unit tests. Due to the annoying bug in JsonSlurper,
as well as the other peculiarities of JSON’s format, future revisions of the
system should consider migrating to a more human-manageable format, such
as YAML.

Rather than simple console output for our test suite, we spent some time
creating an HTML report format, so we could use the additional formatting
options of CSS to highlight elements such as correct vs incorrect results
visually, while remaining easy to view (in a web browser).

6 Results

As an API, the system has no real UI, graphical or otherwise, and instead
exposes its functionality programmatically, in the form of the structured Con-
tact model and associated metrics with the extraction process. To facilitate
quick developer feedback on how the system performs, the system is capable
of generating detailed reports about the extraction process as compared to
our corpus of human-extracted contacts from test emails. The test corpus is
stored in JSON format, and the system can automatically be run against the
corpus with the TestSuite tests. The generated reports are in HTML format,
and contain the expected and actual contact information, as well as visual
indication of how the signature extractor classified the parts of the email,
and where data was extracted inside the actual signature.

The overall performance of the system in each of the extracted informa-
tion categories is summarized in table 1 by the number of True Positive,
True Negative, False Positive, and False Negative results in relation to the
expected human-extracted contact information . These can further be sum-
marized by the Recall, Precision, and F1 score (the harmonic mean of recall
and precision). Our approach sought to optimize precision over recall, in
that the system would only emit contact information with a high certainty
of existing at the expense of missing some contact information that could
have been extracted to avoid incorrect data (false positives). Running the
final system against the test corpus produced the following results:

While the performance of the system on the currently extracted fields is
excellent with the test corpus, future work should extend the performance to
both a much larger corpus of emails, as well as other relevant fields, including
organizations (Company, Title), and social media links (Twitter, Facebook,
LinkedIn). The modular nature of the system will facilitate the integration

10



Signature Name Address Phone Email

True Positive 408 143 17 82 151
True Negative 6256 5 130 56 2
False Positive 126 3 0 0 1
False Negative 182 3 7 16 0

Precision 76.40% 97.95% 100.00% 100.00% 99.34%
Recall 69.15% 97.95% 70.83% 83.67% 100.00%

F1 Score 72.60% 97.95% 82.93% 91.11% 99.67%

Table 1: Overall results at the end of field session

of these additional fields and test data.

11


