

CardGnome: Cards Suggestion Engine

CSM Field Session, 2012
Daria Tolmacheva, Mykal Cuin

1

Table of Contents
1. Introduction and Project Description 4
2. Requrements 4
 2.1 Functional
 2.2 Non-Functional
3. Detailed Design 5
 3.1 Architecture Design
 3.2 Fuzzy Logic Implementation Design
 3.3 Rules Table Design and Function
4. Implementation Details and Results 9
 4.1 Language and System Considerations
 4.2 Tool Usage
 4.3 Issues
5. Conclusions and Future Decisions 11
 5.1 Future Considerations
 5.2 Technical Lessons Learned

2

Table of Figures
Figure 1: Architecture Diagram 5
Figure 2: Database Schema 6
Figure 3: Fuzzy Logic Graph 8

3

1. Introduction and Project Description
CardGnome is a start up company founded in 2010. The company is a web-based seller

of greeting cards that strives to provide excellent internet customer service to all the customers
as well as the artists that provide products for the company. CardGnome works in a fast paced
environment with only two individuals working on the technical aspect of the company’s website
and two individuals working on management and marketing side of the company.

Improvement of customer service lead to the idea of card suggestion function. This
project has been a vision of the company since the very start of CardGnome. The card suggesting
module would allow the client to reach out to each customer as well as making purchasing cards
a faster and more satisfying process. The scope of this project includes creating a ruby function
that would calculate the statistics of previous purchasing preferences of the users. Currently all
the cards in the company’s database are rated against different categories based on fuzzy logic.
The project also requires creating the rules table in ruby on rails that would use fuzzy logic in
order to suggest cards for the user. Later the module would be expended to also being able to
suggest cards from preferences of facebook and twitter and user votes.

2. Requirements

2.1 Functional
○ Create purchase_hist function that would query the database and calculate the

percentages of different cards with different taxonomies purchased and would call
return the array of those statistics

○ Create a module function that would use the calculated statistics and based on
them run the corresponding rules function that would return the list of suggested
cards

2.2 Non-functional
○ Create the rules table in the mysql database in ruby on rails that would store the

list of rule functions
○ Create the functions as ruby files
○ Use mysql server to query the client’s database

3. Detailed Design

3.1 Architecture

4

Figure 1: Architecture Diagram

(1)The architecture starts with the ruby on rails search_cards controller that calls the

purchase_hist function that would take the inputs for username and the number of cards to
suggest.

(2) Using the input the function purchase_hist would query the company’s database on
Mysql server to pull up the items from the Greeting_Card_Listing table and the corresponding
ratings of ListingTaxonomiesAggregateRatings table.

5

Figure 2: Database Schema

The function creates the following queries to access the data:

1. Access Users table to pull up the record with username equal to input
username.

2. Access Orders table to pull all the records with the accessed user_id from the
Users table.

3. Access OrderItems table to pull all the records with the accessed order_id’s
from the Orders table.

4. Access GreetingCardListing table to pull all the records with the accessed
listing_id’s from the OrderItems table.

5. Access ListingTaxonomyAggregateRatings table to pull all the records with
the accessed id’s from the GreetingCardListing table.

6. Access all the records from ListingTaxonomies table to have a list of all the
taxonomy categories.

(3) The applied queries create result items that are returned from database to the function

and stored in ruby variables. Then using those results the function uses fuzzy logic to calculate
the averages of cards that are purchased for each rating. The function runs a loop for each card
purchased with a loop within for each taxonomy id. Within the both loops the function populates
the eval array with a boolean variable that represents whether the rating of the card is greater
than or equal to the certain threshold for a specific taxonomy. Once the loop is finished the eval
table stores the data for each card whether it can be qualified under a specific taxonomy category

6

for all taxonomies. Then using the eval array the function runs another loop that checks whether
each card meets all, some, or only one taxonomy category by checking the number of true/false
for each iteration. Based on the results the function can increment the counters for the number
of cards that fall under a certain category of either fitting all taxonomies, some, or only one. An
avg array is also created to store the average values of the cards that fit those three categories
of either being all, some, or one taxonomy. The avg array is populated by taking the finished
counter values and dividing them by the total number of cards that the user has purchased. Those
values are then stored in the avg. array with corresponding labels of being either both, some, or a
name of the only taxonomy that the card rating qualified.

(4) Using the avg statistics array the function would then call a eval_rule function with a
specific id of the rule in the Rules table. The eval_rule would then query the database to search
for the cards that match the requirements of a specific rule. In this project we implemented only
several rules that search for cards that categorize under all the taxonomies, some taxonomies, or
only one taxonomy.

(5) With the input from the rule’s item data the database would populate the global array
with the suggested cards.

(6) The global array $id, populated in the eval_rule, would then display its elements to
the view of a controller in the web page suggesting id’s of cards.

3.2 Fuzzy Logic Implementation Design

The fuzzy logic was used to suggest the cards with the taxonomy distribution
based on the taxonomy distribution of the purchasing history of that user. The
ListingTaxonomiesAggregateRatings table stores originally stores the cards listing_id that relates
to the GreetingCardListing table ids and the average ratings for a specific taxonomy_id from the
ListingTaxonomies table ids. These average ratings range between values of 0 to 10. There is
also a certain threshold value which determines if the card can qualify under a certain taxonomy
category.

7

Figure 3: Fuzzy Logic Graph

Considering the Figure3 graph for the sample data the following cards with ids 1-10 have
the following ratings for taxonomies of “funny” and “sentimental”. The threshold is set at 5.
Therefore we can determine which cards fit both taxonomies (eg. 5) and which are only “funny”
or only “sentimental”. From this data we can determine the average sets of the cards that fit both
taxonomies or only “funny” or only “sentimental”. Determining those averages (eg. percentages)
we can suggest cards that contain the same percentages that fit the same sets of taxonomies. For
example, if 30% of the user’s purchasing history were the cards that were only “funny” then if
we would suggest 10 cards to the user, 3 of those cards would belong to the only “funny” set.

3.3 Rules Table Design and Function

The client requested us to build a table of rules that would hold all of the rules
and the fields that the rules required. The fields of the table are id, scope, threshold, filter, name,
and priority. The client also requested a function to use the rules table, that would look through
the list of all of the greeting cards currently in the the GreetingCardListing database, and use
a “funny”, “sentimental”, or any type of rule that would be needed to use to sort the suggestions
cards. The rule that would be used would be based on the id given to the eval_rule function, and
how many cards the rule can return would be based on the past_purchase output. Each rule
would have a threshold number, most likely a decimal number from one to ten, to compare
against the current rating of the card in each category. The rule method would then take in data
from the Rules table and ListingTaxonomyAggregateRating table to use for comparisons. The
Rules table would provide the threshold, the id of the rule, and the scope of the rule. The
ListingTaxonomyAggregateRating table would provide the actual rating of the card when

8

compared to the card's listing_id number and place that data into a variable called rating. The
eval_rule method then uses a loop to check through all of the cards in the database and compare
the rating of the card to the threshold of the rule that the card is under ,such as the threshold of id
1, the funny rule, being 4.2. The card will need to be rated 4.2 or higher in funny for the card to
pass. If the card the does not meet the set threshold of the rule the card will be rejected and the
listing_id will not be presented to the web page, and the client. If the rating of the card does pass
the set threshold of the rule the card's listing_id will be returned to the web page, and viewable
for the client.

Then next step of the rules table was to integrate it into the post purchase history search
function. The rules table would take the output of the search function, which is the different
spread of card taxonomies such as .333 being funny, .333 being sentimental. This distribution is
used to determine how many cards each rule will be able to print out of a number given by the
user. So if the user wants 10 cards printed, three of them will be funny, and three of them will be
sentimental. The other 4 will be chosen from other rule distributions.

4. Implementation Details and Results

4.1 Language and System Considerations

Language/System Why?

Ruby on Rails The client’s language of choice and what
all of their code and databases are already
implemented on.

HTML Used in testing database returns.

Ubuntu The clients are avid Mac users, and are using
gems that require a UNIX base.

4.2 Tool Usage

MySQL Viewer Allowed the view of all the database structure

and also being able to add sample data to the
database

MySQL Administrator Allowed any modifications of the database
tables

RVM Used in changing ruby versions

9

 4.3 Issues

We had four major technical issues pop up throughout the coding process. A comparison
issue, an active relation issues, troubles with trying to create a test GUI, and finally some design
issues with functions in the controllers.

The first major issue popped up in the eval_rule function. We need the rating field of the
ListingTaxonomyAggregateRating database and the threshold field of the Rule database to be
able to compare, and check if a card will make it through on a certain rule or not. The issue was
mainly that the rating field was not returned correctly, and that Ruby has an issue with
comparing Symbols and floats. After trying many different options such as turning both of them
into strings, we finally used the .sum option in Ruby to just make the rating add against itself,
and would now return it as a float instead of a symbol. This allowed the comparison go through.
 Another issue was when trying to test if the database was pulling from the fields needed.
It would only return a an Active:Relation object, and would not show what it had pulled from the
database. We figured out that by adding .inspect to the end of the pulling code it would
transform the Active:Relation into a string of what was pulled from the database.

The third major issue was while trying to make a GUI for a demo. We had an html page
that used a form to accept a username and the number of cards that the user wanted presented to
them. The form would then link to an output page that would output the suggested cards, and a
taxonomy distribution for the user. We ran into the problem that the form would not return the
data on the output page or into the search_cards function. The data would pop up in the URL
though. We still couldn’t find a workaround for this one.

The final issue was with the eval_rule. The search controller needed to call the eval_rule
which was in the rules controller. We tried making the search controller require the rules
controller, and that didn’t work. We tried forcing rules_eval into its own module and connecting
the module to the search controller, but that didn’t work either. Finally the only thing we could
figure out to do was take the eval_rule and place it inside the search controller. It did work from
there because it was now local.

Many issues popped up, but we were able to overcome most of them in a rather simple
manner.

5. Conclusions and Future Decisions

5.1 Future Considerations

With all of the errors and bugs that popped up with us as well as some of the faults in
communication we were unable to test our code against their production code. Therefore the
company will need to test the engine in the future. In the future the company can improve the
code by adding more rules and adding a more efficient function to implement those rules to
suggest cards. Also the connection to facebook and twitter can be implemented to work with the
rules table and the purchase history function.

5.2 Technical Lessons Learned

We learned that Ruby has to be tricked into pulling actual numbers from the databases
such as the issues with the rating and needing to force the rating from a symbol into a float
variable. We also learned that Ruby likes to more work in the realm of database relations instead
of giving variables actual values out of the database such as needing the .inspect ending to make

10

them a string instead of a relation. Another technical lesson learned is that Ruby on Rails has a
very steep learning curve, and doesn’t take very well to being changed outside of how it wants to
be changed. Finally, never push to a Github master branch without making sure you know
exactly what it does. It’s possible that it just might be the production code master branch.

11

