
CSM3 - HIIT Mix

1

CSM3

HIIT Mix
Final Report

Colorado School of Mines

Field Session Summer 2012

Benjamin Gilman

Ken “Kip” Shearer

Billy Dixon

CSM3 - HIIT Mix

2

Introduction

 This product is intended for Elizabeth Hudd, a Science Content Specialist for
Jefferson County Public Schools, and Keith Hellman, a Computer Science professor at
the Colorado School of Mines. Most athletes will agree that different songs “pump them
up” while others slow them down. Liz thought of the idea for this program during a
workout where a slow song played during her workout and killed the pace she was
attempting to reach. She then came up with the concept of linking music tempo with
heart rate to create a uniquely fluid feel during a workout. This application appeals to
athletes of every level, primarily the “Average Joe”, who wants to become
cardiovascularly fit by training at various intensity levels for maximum benefit.

Product Vision

This product is intended for the use of athletes, personal trainers, and anyone
else who wants to get in shape. It will increase the effectiveness of a workout by
matching high tempo songs to high intensity intervals and vice versa. The application is
made to be used with HIIT, that is High Intensity Interval Training, workouts to achieve
optimal performance, however it may also be used with various exercise regimens. The
application will create a playlist from the user’s music library, then splice the songs
together into a single audio file, which will sync up with a given workout. To do this, it
will have to accurately match songs to intervals based on a relationship between tempo
and target heart rate. It will also allow users to customize nearly every aspect of their
workouts.

CSM3 - HIIT Mix

3

Requirements

 The HIIT Mix application is designed to enhance a workout by creating a
workout-specific song file based on the user’s personal music library.
Functional Requirements for the application include:

● A user interface allowing creation and modification of workout mixes, including:
○ A list of separate workout programs to choose for a variety of mixes

■Each workout is based on High Intensity Interval Training (HIIT)
○ User customization of new and inventive workouts within the interface
○ Audio signals (or cues) to represent changes in workout intervals

■The user will have the option to record or import recording of audio to
represent a change in time (This option may be added at any
number of interval transitions)

○ A feedback system (interface) that adjusts music selection based on
patterns of the user

■User has ability to rate an entire workout or individual songs within the
application to optimize future workout mix selections

● The ability to analyze and generate songs within the application, including the

following requirements:
○ An association between the beats-per-minute of a selected song and the

desired heart rate for the interval
■A song is chosen to most accurately reflect the current pace of the use

○ The ability to generate multiple song files for a desired workout

Non-Functional Requirements include:

● Desktop application environment
○ An simple “one-click” application
○ Development of software that can be used for multiple music libraries

● Ability to analyze an entire music library overnight

CSM3 - HIIT Mix

4

Architecture

 HIIT Mix is a desktop application that can either be started by double-clicking the
executable icon or running it from the command line. Using a recursive algorithm, it
sorts through an entire music library, with a root folder selected by the user, to finally
output a workout mix in the MyDocuments folder of the user.

The HIIT Mix architecture is primarily based on the Java language environment.
To avoid creating complex functions that analyze and manipulate audio data, the project
relies on an external application programming interface (API), named “The EchoNest”.
The EchoNest company has written different APIs for four separate development
languages, including Java and Python. All four languages call a central database
managed by EchoNest, which contains analytical information for thirty-million songs.
 The Java portion of our application calls the EchoNest Java API (see Figure 1)
for each song in a music library, returning a string of data for each requested
information regarding a song (tempo, name, artist, etc.). In order to keep track of this
data without having to make unnecessary calls to the database, these strings are then
stored in a read-only text file for future reference.
 Once the information in Java (provided by the API) is used to create a final
“playlist” of song clips to be spliced into a single object, the information (file location,
start time, and end time) are then written to a file to be read by an external Python
application (see Figure 1). To do this, the Java portion of the code executes a system
call to the command prompt of the user’s system. This call is given one string, which
contains four file locations, each separated by spaces:

1. The python implementation .exe file with the installed modules necessary to call
the EchoNest API

2. The “Slicer.py” file that performs the functions necessary to splice any number of
media files together

3. A temporary “.saves” file which contains the written information described above
4. An output file based on the name of the current workout in the Java application.

This call to the command line accesses the python compiler, runs the program, and
provides enough input for the code to run smoothly.

The Python portion of our application calls the “EchoNest Remix” Python API
(see Figure 1). This is the only EchoNest API that provides functions and classes for
audio manipulation, albeit it handles analysis in the same manner as the other
languages. Using imported Python modules to manage the EchoNest data structures,
the programs reads in the file location of a song, which accesses the EchoNest
database to then returns a list of strings regarding hundredths-of-seconds-long data of
each music file. Using this information, the code appends the desired segments of time
to each other for every song. This final data is “assembled,” then “compiled” to an
output .mp3 final given by the fourth file location in the command line.

CSM3 - HIIT Mix

5

(Figure 1) EchoNest interfaces between Java and Python

 Media playback in HIITMix is handled through the use of the java bindings for the
VLC Media Player. We chose VLC due to the fact that it is Open Source, has easily
implemented Java bindings, and is extremely robust, as it can handle virtually any
media file we give it. VLC is written in C++, which is why we need to use the Java
Native Access, which is a lightweight approach to calling code across languages, to
bind the library to our Java application. In our application, we create an instance of VLC
within our Swing interface using the VLC API. This allows us to leverage the power of
VLC while it hides much of the complexity involved with media playback. In our
MusicPanel class, we create an MP3Player object, which in turn creates an
AudioMediaPlayer from the VLC library (see Figure 3). Whenever a song is selected in
the playlist panel, its file location is sent from MediaPanel to the MP3Player object,
which loads the file into VLC through a simple call to the AudioMediaPlayer’s
playMedia(String filepath) function, passing the file’s absolute file path as an argument
(see Figure 2). The AudioMediaPlayer begins playing the song at the beginning,
however we do not want the song to start playing just because it was selected in the
playlist. Therefore, we have a call to the AudioMediaPlayer’s stop() function, which
simply stops the file from playing but keeps it loaded in VLC, ready to resume whenever
the user clicks the play button. This button acts as a toggle switch, playing the loaded

CSM3 - HIIT Mix

6

file if not currently playing a song, and pausing the current song if it is already playing. It
does this through a function call to the MP3Player from MusicPanel, which in turn calls
the AudioMediaPlayer’s play() or pause() functions.

(Figure 2) Interface between Java, VLC, and JNA

There is also a timeline JSlider on the MusicPanel, which allows the user to

select the part of the song they want to hear. Due to time constraints, it does not move
as the song plays. Using a SliderListener, this slider makes a call to the setPosition(float
value) function of the MP3Player’s AudioMediaPlayer, using the position of the slider
once the user has released it. This function call works whether a song is playing or
paused, however is best used when paused.

CSM3 - HIIT Mix

7

Using the VLC API requires that the full VLC application be installed on the
user’s machine, however we included both the 32-bit and 64-bit versions of VLC with
HIITMix so the user is not required to download or install any additional software. In
order to use this API, we had to package the vlcj framework as well as the latest version
of JNA along with our application, as these .jars are vital in using VLC. Our application
must be able to locate the native library for VLC within our include packages and load it
using JNA. This can be problematic if VLC is not in the correct place, which is why we
include it in our HIITMix folder, as we had to hardcode the location of the library to
ensure the library is always found. More information on this can be found in Appendix C.

Technical Design

Figure 3 shows the UML diagram for our application which revolves around using the
EchoNest API. The MusicFunctions class calls heavily on the API for identifying music
passed through it, via threading. Due to the delay from uploading files, a large amount
of threading is used to try and make the best use of the client’s connection speed. Once
values are returned from EchoNest, the data is stored into an ArrayList and later saved
to a text file. Due to the private constructors used by EchoNest, we made our own
classes, named SavedClips and SavedSong, to be able to save and load data from a
text file. The two audio classes contain all the important data returned from the
EchoNest database. SavedSong contains the song title, artist, tempo, and an array of
SavedClips. SavedClips each contain the SavedSong they belong to, along with the
start and end times for the clip. These clips are portions of the song that work well being
used on their own so that a clip does not jump in the middle of the chorus or verse.

CSM3 - HIIT Mix

8

(Figure 3) UML of HIITMix

CSM3 - HIIT Mix

9

 Our application begins with the MainFrame, which is our JFrame object that
holds all other objects and components (see Figure 3). On the west side of this frame
(in Figure 4), we have a JList for the list of workouts, which is nested in a JScrollPane to
allow scrolling if the user has a large amount of workouts. In the center panel, we
display the currently-selected WorkoutProgram. On the east, we have the playlist panel,
which, like on the west side, is a JList nested in a JScrollPane. The south panel houses
both the ButtonPanel and the MusicPanel. The ButtonPanel is a JPanel that holds all of
the necessary buttons for our application, while the MusicPanel is another JPanel that
handles media playback. Finally, a JMenuBar is added to the MainFrame to provide
additional functionality without cluttering up the user interface.

(Figure 4) Graphical User Interface, displaying layout of panels and buttons

The user selects a WorkoutProgram from the workout playlist on the west panel.

Each WorkoutProgram has an optional warm-up and cooldown, along with an array of
any number of intervals with a matching size array of SavedClips. Each interval is
composed of an intensity, percentage, and a duration. When chosen, a workout is
passed into the MusicFunctions, where a clip is found matching every interval as best it
can, comparing tempo to heart-rate percentage and time. The conversion between
tempo and heart-rate is simply the highest tempo song matched to the highest heart
rate used in the workout, and slowest matched to the lowest heart rate used.

WorkoutPrograms are stored as text files, with the name of the workout at the
top, followed by two booleans for checking if it has a warmup and/or cooldown. After
this, each line has two integers, the first representing the number of seconds an interval
lasts. The second integer indicates the percentage (out of 100) for the target heart-rate
of that interval. These files are loaded to the WorkoutProgram class, which creates a
unique object. Multiple WorkoutProgram objects are stored in an array in the Control
class.

CSM3 - HIIT Mix

10

WorkoutPrograms extend JPanel, because they are added and displayed directly
in the MainFrame (see Figure 3). Control has a pointer to the currently selected
workout, which is needed by the MainFrame when it resets the workout panel after a
different workout is selected. This way, the current workout is always displayed
properly. Control also handles the creation of a playlist for a particular workout, as well
as mapping the playlist save file to the workout save file.

Creating, deleting, and saving workout files is done through the MenuBar class.
This class extends JMenuBar, and is added to the MainFrame (see Figure 3). Under the
first menu item “File” we have the following options:

New opens a JDialog where the user can select from a dropdown menu a number of
sets, from 1-20, and two JCheckBoxes representing if they would like a warmup
and/or cooldown, respectively.

Open creates an instance of a JFileChooser that allows the user to import an existing
.workout file. There is a FileFilter in place here to prevent users from opening
any file other than .workout files.

Save will save the current workout in place, unless it has not yet been saved and
therefore has no save file associated with that workout.

Save
as

will open another JFileChooser to allow the user to save the current workout
with the name and directory of their choosing.

The next menu item in MenuBar is “Edit”

Add Music
Folder

opens a JFileChooser that lets the user select a folder that contains music
they want to be analyzed. Each music file in this folder is sent to the
EchoNest API when the “Analyze Songs” button is pressed.

Load
Saved
Music

will read from the saved music file in the user’s My Documents folder. It
then loads the music files that have been analyzed so far into the playlist
when the user clicks the “Generate Playlist” button.

Delete
Workout

will only delete a workout if it is not one of the preset workouts included in
HIITMix install package.

Finally, we have the “View” and “Help” menu items. “View” simply allows the user
to hide the playlist panel to get a better view of the workout graph by clicking the “Hide
Playlist” option. “Help” has an option to open the readme file for HIITMix in notepad.

Within the ButtonPanel class is the MusicPanel class, which holds the JSlider for
controlling media playback, a play/pause button, and an MP3Player object (see Figure
3). After a playlist of songs has been created, they are displayed on the east panel of
the MainFrame in a list corresponding to the appropriate intervals. Each song can also
be selected from the list to display the information regarding the clip being used (also
included in MusicPanel). Through the use of the VLC API, it is possible to sample the

CSM3 - HIIT Mix

11

audio from the selected audio clip before finalizing the playlist in the MusicFunctions
class. The selected song is passed to the MP3Player class, which creates an instance
of the VLC media player that then handles the media playback. When pressed, the
MusicPanel’s play/pause button calls the MP3Player object, sending a call to the VLC
media player to either play or pause the current song.

In order to load the proper version of VLC, we had to come up with a snippet of
code to select the appropriate folder. This code checks if the user has a 64-bit operating
system, as indicated by the Program Files (x86) folder. If this is the case, our application
loads the 64-bit version of VLC. Otherwise, it loads the 32-bit version. The library file
inside VLC is found and loaded using JNA after we pass it the appropriate file’s location.

String programFiles32bit = "C://HIITMix//lib//vlc_32bit";
String programFiles64bit = "C://HIITMix//lib//vlc_64bit";
// uses 64-bit VLC if user has 64-bit OS and 64-bit JRE, else uses 32-bit VLC
if(new File("C://Program Files (x86)//Java").exists()
&& new File(programFiles64bit).exists()){

NativeLibrary.addSearchPath(RuntimeUtil.getLibVlcLibraryName(),
programFiles64bit);

 Native.loadLibrary(RuntimeUtil.getLibVlcLibraryName(), LibVlc.class);
} else if(new File("C://Program Files//Java").exists()
&& new File(programFiles32bit).exists()){

NativeLibrary.addSearchPath(RuntimeUtil.getLibVlcLibraryName(),
programFiles32bit);

 Native.loadLibrary(RuntimeUtil.getLibVlcLibraryName(), LibVlc.class);
} else {
 // user does not have Java installed
 JOptionPane.showMessageDialog(null, "There was a problem

loading VLC and/or Java.", "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(1);
}

When a workout and playlist are satisfactory, they can be finalized, and the

playlist is saved to a text file, which is then sent to our python functions. The python call
reads the clips from the text file and loads each music file to a list. After converting the
files to a .wav format so they can be spliced together in the EchoNest Remix API, they
are then converted back into an .mp3 format to be finalized and saved into the My
Documents folder. The .mp3 file can be played on any standard MP3 player.
 The primary GUI functionality comes from the ButtonPanel, which contains the
primary user interaction with the program.

Analyze
Songs

Calls MusicFunctions to load all of the files previously loaded from the
recursive file locator call. These songs are all added as SavedSongs and
written to a text file after the loading is either canceled or completed.

Delete
Song

Removes a specifically selected song from the SavedSongs array, and
then replaces this gap with another generated song.

CSM3 - HIIT Mix

12

Add Song Opens up a JFileChooser to individually choose a song to add to the array
of previously-generated SavedSongs inside of the MusicFunctions class.

Generate
Playlist

Sends the currently selected workout from the GUI to MusicFunctions,
where SavedClips are matched to intervals to be returned for later use.

Create
Playlist

Saves the currently selected clips to a file, which is then passed into
python to be spliced together and exported to the final .mp3 file.

Design & Implementation Decisions

We began developing this application in Java, with the intention of creating a
multi- platform application that would work on any machine with a JVM. However, during
the development process, we ran into many situations where we were forced to decide
between specific operating systems. Due to the large install base and the fact that we
did not have reliable access to Mac or Linux machines, we decided to tailor our
application for the Windows platform. We still wanted to support 32-bit and 64-bit
versions of Windows, which became a problem with the use of the VLC API. However,
this problem was resolved fairly easily, and the application works on both 32-bit and 64-
bit Windows machines.

We chose to use the EchoNest API to acquire song information including the
song tempo, official title, artist, length, and “segments” of the song. The segments can
be used for “good” splicing points to avoid starting a song in the middle of a chorus, at
the very end of the song, or other “bad” times. We also decided to use the EchoNest
Remix module for Python because it is the only media-editing API that EchoNest offers,
though with the same consistency of information as the API we use for Java. Using the
Echo Nest API to identify, analyze, and manipulate songs can take a considerable
amount of time, so all of the data collected from the analysis is saved to a text file to be
used at a later time. Therefore, it avoids re-sending data to the EchoNest database
each time the program loads.

We considered developing a mobile version of the product for Android or iOS.
However, this was not requested specifically by the client, and would have limited the
overall usability of the end product. Competition applications use specific playlists or
songs, but do not implement an association between a user’s heart rate and the beats-
per-minute (bpm) of a media file. The competition also require an Android or iOS
device, while the goal of our application was to be compatible with any MP3 player.
Our application currently operates as a desktop application. This is also beneficial, in
that, most users do not store their entire music library on their mobile devices. In
addition, laptop and desktop machines have more processing power, which is
necessary for the splicing of a generated playlist. Desktop applications may also be left
the run overnight if the user has a large amount of music to analyze or a slow internet
connection. Making use of the EchoNest API on a mobile device would not only be
slower, but also more costly if the user intends to use the application over a cellular data
network with a limited data plan.

CSM3 - HIIT Mix

13

Results

The goal of this project was to create a multi-platform desktop application that would
analyse the user’s music library, generate playlists for HIIT workout routines, and splice
the songs in the playlist to produce an MP3 file that can be used on any compatible
device. The playlist created would, as closely as possible, match the tempo (BPM) of
the song to the target heart rate of each interval in the workout outline. Our application
meets all of our client’s functional requirements, as it successfully analyses music,
creates custom workout routines, and splices songs into an MP3 file for a specific
workout. Due to licensing issues however, the EchoNest APIs only allow 120 calls to its
server per minute, resulting in a slow return in information. In addition, because of the
dependency of EchoNest, the user must always be accessing the internet to run to
program successfully. The implementation of audio cues, a song rating system, and a
basic artificial intelligence that learns the user’s preferences were all features that did
not make it into the final product due to time constraints.

Looking Forward

Here are a few items that could be addressed in the next version of HIITMix:
● Improving slicing functionality.
● Making the application multi-platform as originally intended.
● Adding audio cues.
● Improve the MP3 output file’s sound quality.

Known Bugs

There are several known issues with the current build of the application:
● When songs are playing, the timeline slider does not move as the song

progresses.
● Trying to create a playlist when the workout selected has more intervals than the

user has songs analysed results in an error.
● Deleting custom made workouts is error-prone, especially when the workout has

not been saved.
● Editing custom workouts is problematic, due to the fact that the WorkoutProgram

does not resize after it is initialized. The functionality of the program is not
affected, however the workout will not display properly.

CSM3 - HIIT Mix

14

Appendix A: Resources

1. VLC was used for media playback within the application. Both 32-bit and 64-bit
Windows versions of VLC are packaged in the HIITMix folder to avoid forcing the user
to install the program. The packages used can be updated as needed, and are availabe
here:
http://www.videolan.org/vlc/index.html#download
2. The Java bindings of the VLC API were used to make use of VLC’s functionality
within our application. Information on vlcj can be found here:
http://code.google.com/p/vlcj/
3. JNA was necessary to bind the VLC native library in our application, and its two files,
jna.jar and platform.jar, are packaged in the HIITMix.jar. These files can be found at:
https://github.com/twall/jna
4. The python framework used for the “EchoNest Remix” API is included in the
installation materials, and will take no effect on any Python version installed on a
machine. These files should never be updated nor removed.
5. The EchoNest API relies on a developer API code, which can be found in a text file in
the installation materials. If there is ever a time where the code is obsolete, you can
register a new one to replace it with at: https://developer.echonest.com/account/register
Note: the python code does not directly refer to this document, and needs to be updated
in the appropriate line as well

Appendix B: Installation

This application is compatible with 32-bit and 64-bit versions of Windows XP, Vista, and
7. It launches using the Java Virtual Machine, which must be installed in the user’s
machine prior to use of HIITMix.
To install:
1. Unzip the provided folder and copy the HIITMix folder onto your C: drive. This is the
folder containing the executable jar file that will launch HIITMix. You can create a
shortcut on your Desktop to this file if desired.
*Note: Do not put this folder in your Program Files as it will not work due to the space in
the path name. This causes issues in our python script, which is a vital part of HIITMix.
2. Copy the HIITMixDocuments folder into your My Documents folder.
3. You are now ready to launch HIITMix, assuming you have Java installed on your
machine. If you are unsure if Java is installed or if it is up-to-date, head over to
http://www.java.com/en/ to update or install Java.
4. Double click on HIITMix.jar to launch.
5. If clicking the jar file fails to launch the application, open Command Prompt and enter
the following line:
java -jar C:\HIITMix\HIITMix.jar
*Note: Do not close the command prompt window until you are finished using HIITMix
as this will exit the application.

http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://www.videolan.org/vlc/index.html#download
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
http://code.google.com/p/vlcj/
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://github.com/twall/jna
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
https://developer.echonest.com/account/register
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/
http://www.java.com/en/

CSM3 - HIIT Mix

15

Appendix C: VLC

HIITMix makes use of vlcj, a 3rd party framework that provides Java bindings for the
VLC media player. It uses JNA to load the library of the VLC API, specifically the
libvlc.dll file contained within the packaged VLC application downloaded from
http://www.videolan.org/. The jars for JNA, jna.jar and platform.jar, as well as vlcj-
2.1.0.jar are packaged inside HIITMix.jar, while the packages containing the actual VLC
libraries are contained in the HIITMix/lib folder. These jars are imported to the
MP3Player class in HIITMix, as shown below.

import uk.co.caprica.vlcj.binding.LibVlc; //vlcj
import uk.co.caprica.vlcj.runtime.RuntimeUtil; //vlcj
import com.sun.jna.Native; //jna, platform
import com.sun.jna.NativeLibrary; //jna, platform

The VLC library is loaded into the working environment using JNA, which requires the
path to the proper version of VLC for the user’s operating system. This was
accomplished by following and modifying an example application that was found at:
http://www.capricasoftware.co.uk/vlcj/tutorial1.php.

http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.videolan.org/
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php
http://www.capricasoftware.co.uk/vlcj/tutorial1.php

