
Bump-O-Meter 1

Field Session 2012

Newmont Mining Corporation
Bump-O-Meter

Lorenzo Gallegos

Joshua Shaw

Craig Soto II

June 14, 2012

Bump-O-Meter 2

Introduction

 Newmont Mining Corporation is a company which primarily produces gold.
Today, they have mining operations in nine different countries across the globe.
Newmont is devoted to the environmentally friendly discovery and recovery of gold.
Some of the company’s mining operations include open pit mining. Large quantities of
earth are removed from these pits using over-sized trucks. These trucks drive along dirt
roads that become washed out and bumpy.
 Recognizing the need for safety, our client came up with an idea to create a
smart phone application to find and measure bumps. The smart phone should collect
data, send it to a server, then display the information on a user-friendly web page.
Although the idea for measuring bumpiness of roads came from mining trucks in high-
traffic open-pit mines, this prototype application was designed to be used for collecting
data on bike paths.

Bump-O-Meter 3

System Design

Functional and Non-Functional Requirements
● Application

○ Require the user to input a username and path name

■Allows the user to find and view their unique data on the website.

○ Record GPS coordinates and Accelerometer data

■GPS used to plot path on a map on the website

■Accelerometer used to display bumpiness of path

○ Store data temporarily on the phone

■This gives the user the option to send data at their convenience

○ Send the data to a central server

■Server is used to track all data sent from mobile users

■Website accesses data stored on server

○ Give the user the option to send the data at the end of the bike ride or at a
later time

■The user may not have data service at the end of a ride, the user is
given the option to send the data later

○ Display bump feedback to the user

■Shows the user that the phone is properly recording data

○ Allow the phone to be mounted anywhere during run-time

■Makes phone position independent of the data collected

○ Present user with basic path statistics upon completion

■Gives the user some initial statistics about their ride

● Website

○ Allow user to select from drop-down menus

■Allows the user to narrow their search in a user-friendly manor

○ Display map with path and bumps

■Allows the user to see their paths and where severe bumps occurred

○ Display chart to convey bumpiness of path

■Presents user with more detailed bump information

● Non-Functional

○ Website does not have to reload

○ Android application will be written in Java

○ Data will be stored on a PostgreSQL server

○ Android must have a reliable transmission of data to a PostgreSQL server

Bump-O-Meter 4

Software Architecture

Data is initially recorded on an Android device using GPS and the provided
accelerometer. Data is temporarily stored locally in a SQLite database. The data is then
sent to the PostgreSQL server that was provided by Newmont. Data from the server is
then accessed via the web. The data is passed back and forth between client and
server to allow the user to view unique path data on the web page. This is all depicted in
Figure 1.

Figure 1: Software Architecture

Bump-O-Meter 5

Technical Design

The Bump-O-Meter application stores a significant amount of data during a bike ride in
a SQLite database on the phone. Figure 2 shows the SQLite schema for the local
database. When a user begins recording path data, the username, date of recording,
and trail name are stored in the first table. During recording, the application “listens” for
the sensor to change. The accelerometer is sensitive enough to register a change on
even the tiniest bump. When the application “hears” a change, it creates a data point
with the last known GPS coordinates as well as the acceleration and a timestamp. Each
data point is then stored in the second table as they are recorded.

Figure 2: Temporary Phone Database

Figure 3 shows the full schema of the database on the PostgreSQL server. The data is
stored on the PostgreSQL server in 2nd normal form. The users table stores the name
of all users that have uploaded information to the server. The dates table stores each
day that a path was ridden. A unique entry is created for each user (ie. Bob and Alice
ride a path on the same day, a date entry will be made for each user). The paths table
stores the name of each path. A dates_paths join table exists because a user can ride
the same path on two different days and a user can ride multiple paths on the same
day. Finally, the points table stores all relevant GPS and Accelerometer data associated
with a path. See figure 3 for full schema.

Bump-O-Meter 6

Figure 3: PostgreSQL Server

The user first starts the Bump-O-Meter application on his/her Android device and
performs a login by entering their username. The user is then redirected to the home
page, where they have the option to start recording, send stored data, delete stored
data, or log out. If they press the start button the user enters the path name before
recording. This is shown in Figure 4.1. Once the user presses the accept button, the
app begins recording. General feedback is provided to the user to alert them if they hit a
bump. Once the user stops recording, feedback will be provided and they can either
choose to send the data now or later. This is shown in Figure 4.2. Whether the user
chooses to send now or later, they will be redirected back to the home screen where
they are provided with the original start, send data stored, delete stored data, and log
out options. If the user chooses to send the data later, and after being redirected to the
home screen, chooses to delete the data, the user will be prompted to confirm if he/she
would like to delete the data or not. This is shown in Figure 4.3.

Bump-O-Meter 7

Figure 4.1: Login/Main/Path Name

Figure 4.2: Recording/Sending Option

Figure 4.3: Main/Deleting Option

Bump-O-Meter 8

Upon going to the Bump-O-Meter website, the user is presented with a nearly blank
page (Figure 5.1), with drop-down menus for username, date, and path. Upon arriving
at the web page, only username will have options. Once the username is selected, the
date drop-down menu is populated, and by default, the paths drop-down menu is
populated for the first date. The user then selects a date and chooses the path name for
the path they want to view. Upon selecting a path name, a map and graph will be
displayed, conveying the full path information (Figure 5.2). At any time the user can
choose to select new user information and the correct data will be displayed. A full flow-
chart is provided in Figure 6.

Figure 5.1: Bump-O-Meter Website (before Username is selected)

Figure 5.2: Bump-O-Meter Website (after Username is selected)

Figure 6: Bump-O-Meter Flowchart

Bump-O-Meter 9

Bump-O-Meter 10

Design and Implementation Decisions
Decisions

● The database schema on the phone is different than that of the schema on the
server as a result of several considerations. Originally we considered having the
same schemas for both databases, but this resulted in complicated data transfer.
We then considered having only 1 table in the phone’s database. This resulted in
a table that was difficult to query. We settled on a 2 table schema on the phone
because it minimized the amount of data being stored while allowing for simple
queries and easy data transfer.

● The website objective was to have the simplest user-friendly interface. The
website uses AJAX because the web page only has to manipulate a small set of
interfaces. If AJAX was not used, the web page would frequently have to be
reloaded, and user data would have to be stored in an inefficient manner. The
goal was to have the user select options from a set of drop-down menus without
having to reload the page. Using AJAX prevents the user from requesting data
that does not exist, and makes the GUI elegantly simple.

○ In order to use AJAX, each change of a drop-down menu makes a
database request to the server in PHP, which is then returned to the client
in JSON. The client-side Javascript then parses the JSON, and appends
the retrieved data onto the drop-down menus.

● Google Chart Tools was chosen due to ease of use, clear documentation, and
reputation in the web development community. Using it was straight forward and
easy to use with AJAX.

● A few Javascript mapping libraries were recommended by the client such as
Openlayers, but after further research, Google Maps API was chosen for the
same reasons as Google Chart Tools. Also, Google Maps is a well known map
interface and is familiar to many web users.

● The PostgreSQL JDBC driver was chosen due to ease of use and reputation in
the Android development community. Other methods were complicated and
unnecessary.

● The slowest sensor setting was chosen for the accelerometer because the other
two settings provided too much data which could potentially create problems for
data storage on the phone. Also, such an accuracy was not needed due to the
speed of bicycles.

Issues
● GPS accuracy was a major issue that could not be resolved. This led to an

inaccurate representation of the data collected. Upon doing further research, we
learned that the GPS installed in the smart phones is a low grade chip. This was
not an issue that we could have easily resolved. The most simple way of solving
this issue would be to use a GPS specific device.

● We encountered another minor issue related to transferring data. When trying to
send the data from the phone to the server, the phone would freeze until the data
was sent. This was fixed by stalling the data transfer until after changing screens
so that the user would know what is happening.

Bump-O-Meter 11

Results
Before the completion of this application, there was nothing on the market that does
quite what Bump-O-Meter does. No app existed that tracked paths and their bumpy
spots and displayed this data to a web page. Now a community of riders can track
where they have ridden and identify potential trouble spots.

Despite some minor drawbacks technical issues we met all functional and non-
functional requirements for this project. Given more time however, these are a few goals
that could be implemented to improve the application:

Areas for expansion:
● Speed up transfer of data
● Improvement of GPS accuracy through path prediction
● Implement a sending screen that does not freeze and displays until completion of

data transfer
● Add a “Settings” screen
● Expand on the already existing statistics screen at the end of rides
● Add an option that displays a map to the user during their ride
● Add an alert system that would notify the rider a bump was coming up
● Statistical analysis of frequently ridden paths to better identify trouble spots
● Secure Log-in system

Bump-O-Meter 12

Resources
Google Charts Library Documentation

● https://developers.google.com/chart/

Google Maps Library Documentation

● https://developers.google.com/maps/

Android Development Website
● http://developer.android.com/

PostgreSQL Library Documentation
● http://www.slideshare.net/markwkm/andoird-postgresql

Android Tutorials for Java
● http://www.vogella.com/

https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://developer.android.com/
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.google.com/url?q=http%3A%2F%2Fwww.slideshare.net%2Fmarkwkm%2Fandoird-postgresql&sa=D&sntz=1&usg=AFQjCNHF-zRPgIRP6UqPv5Rv6PmAZQB4ew
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/
http://www.vogella.com/

