A.G. WASSENAAR

A.G. Wassenaar

Geotechnical and Environmental Consultants

Cecilia Smyth and Jimmie Butler
6/20/2012

Introduction

A.G. Wassenaar is an engineering firm which provides geotechnical and construction-related
services for commercial and residential properties in the Denver Metro area. In particular, A.G.
Wassenaar field engineers perform “observations” at up and coming property sites. Observations are
inspections of particular parts of buildings or the environment in which they are being built and can
result in a pass or fail, based on how the work or site compare to known quality standards. A passing
observation is good for a limited amount of time; a failing observation requires the client to take
corrective measures and set up a re-observation. This process of taking client information, scheduling
field engineers, performing observations, and recording results, unfortunately, produces a lot of
paperwork. At present, Microsoft Access is in use in the A.G. Wassenaar office and, while this program
does a great job of managing client databases, this software is insufficient for managing, generating, and
distributing the paperwork necessary for the field engineer’s use in the field. As such, A.G. Wassenaar
was looking to have made for them an Android application to be used on tablets carried by the field
engineers. This application would eliminate the need for printed assignment sheets (of which one was
being printed per scheduled observation, see Figure 1 below), observation review sheets (Figure 2),
printed daily schedules, and hard copies of the pass and fail forms (Figures 3 and 4). The end goal is to
move toward a paperless process by utilizing email for distribution of paperwork along with database
access and easy form-filling through the much more mobile tablet interface.

Company: Infinity Communities, LLC Project: 11195

Region: Lowry Area Subdivision: Stapleton
Lot: 7 Block:11 Filing: 32 Blg:
Tech Engineer: Retoff, John :
Insp Address: 7959 East 32nd Avenue
PO:

Observations:
Excavation and Footing Form Observation

Special Conditions:

Unit:

*** NOTE: This customer\subdivision has red flags ***

Date: Tuesday, May 15, 2012 Time: 2:30 PM

Caller: Amber 303-841-9542 (Penley) Pour: 3:30 PM

Figure 1: A typical assignment form for a field engineer

A.G. Wassenaar
, TOTAL TIME
m
PIER LOG PAGE____OF___

CLIENT FIELD ENGINEER
PROJECT ADDRESS
DATE Lot BLOCK BLDG. UNIT FILING
ENGINEER/PLAN NUMBER: SUBDIVISION
PIER DEPTH
z -3 < o b
g .- E = 2 - z g g § g DESCRIPTION OF
PIER | PIER 585 8| 2| B (62 - &
2l Sl 5| &§| & E E3 |z |x|3 SUPPORTING
No.(ow | 4 §§Jz§ x gfg 23 zE | & |3 STRATUM
z3za|3%| 3| | 582 88 88 |5[28|%
S= STABLE C= CLEAN D =DRY CA= CASED W= WET CS= CLAYSTONE $S= SANDSTONE
FOUNDATION PLANS SOILS REPORT
MINIMUM LENGTH MINIMUM LENGTH
SPECIFIED PENETRATION SPECIFIED PENETRATION
STEEL SIZE - CAGESONSITE || YES [] ~o # STEELSIZE-CAGED [|YES [| NO
4 & 8 VOIDSIZE 4 & 8 VOIDSIZE
BEARING PRESSURES BEARING PRESSURES
END/ SIDE / DEAD LOAD END /SIDE / DEAD LOAD
i / L L
ENGINEER: ENGINEER: AGW
PLANNUMBER: _ [| STRUCTFLR [| SOG REPORT NUMBER:
DRILLING CO. NUMBER OF RIGS:
STEEL ON SITE: []ves [Jno STEEL IN PIERS: [] ves] no
CONCRETEONSITE: | | YES [Ino CONCRETE IN PIERS: [ves [] no
SONATUBEONSITE: || YES [Ino DRILL AND POUR: [] ves [] no
PUMP ON SITE: []ves [[Ino PUMP FROM BOTTOM UP: [] ves [] no
SHEAR RINGS: []ves [Ino ROUGHENING [ves [] no

REMARKS:

PIER OBS. PG.1 1/05

Figure 2: An observation review form to be filled out by a field engineer

2180 South Ivanhoe Street. Suite 5
Denver, Colorado B0222-5710

303-759-8100 Fax 303-756-2920
c - www agwassenaar.com

A.G. Wassenaar

Geotechnical and Environmental Consultants

CLIENT: 25 DATE OF OBSERVATION:
ADDRESS: X

LOT: BLOCK: BLDG: UNIT: FILING:
SUBDIVISION: X% PROJECT #: A
ENGINEER / PLAN #:

OBSERVATIONS MARKED BELOW WERE FOUND TO BE IN GENERAL
CONFORMANCE WITH OUR RECOMMENDATIONS AND/OR PROJECT
PLANS/SPECIFICATIONS AT THE TIME OF OUR VISIT.

O EXCAVATION

O PT/RAFT FOUNDATION (TRENCHES / CABLE PLACEMENT / STRESSING)
O FOOTING (DECK / PORCH / PATIO)

O PIER/ HELICAL (DECK / PORCH / PATIO)

O FOUNDATION WALL REINFORCING STEEL

0 CONCRETE ENCASED ELECTRODE

J FOUNDATION VOID 4" 6" 8" 10" 12"

O PERIMETER DRAIN SYSTEM (INTERIOR / EXTERIOR)

O UNDERDRAIN EXTENSION

O DAMPPROOFING

0 FOUNDATION INSULATION

0O STRUCTURAL FLOOR (STEEL FRAME / CONCRETE REINFORCING)
O SLAB-ON-GRADE (SOG / SF)

O COMPULEVEL SURVEY

O CRAWL SPACE ENVIRONMENT (BASEMENT / MAIN LEVEL)

O VAPOR RETARDER (BASEMENT / MAIN LEVEL)

O BACKFILL (FOUNDATION /UTILITY)

O MOISTURE / DENSITY TEST (GARAGE / DRIVEWAY / SIDEWALK)

O OTHER:

REMARKS:

ENGINEERING FIELD TECHNICIAN:

FORMS\OBS FORM 1_RES (04-12-05)

——

Figure 3: A blank pass form for a completed observation

2180 South Ivanhoe Street, Suite 5
Denver, Colorado 80222-5710

303-759-8100 Fax 303-756-2920
c ° www.agwassenaar.com

A.G. Wassenaar

Geotechnical and Environmental Consultants

CLIENT: DATE OF OBSERVATION:
ADDRESS:

LOT: BLOCK: BLDG: UNIT: FILING:
SUBDIVISION: PROJECT #:

ENGINEER/PLAN # :

REQUIRED RE-OBSERVATION(s):

REMARKS:

0O CANCELLED ON-SITE TIME:

ENGINEERING FIELD TECHNICIAN:

RE-OBSERVATION REQUIRED

FORMS\OBS FORM 2_RES (04-12-05)

Figure 4: A blank fail form for a completed observation

Requirements

A.

1.

&

PwNPE

o

Functional Requirements

Information from existing Access database must be imported into the new application’s
database

Application must have authentication preventing unauthorized use by either outside entities or
employees lacking proper clearance

Application administrators need be able to modify and establish new roles within application
authentication such that item 3 above be properly maintained

Application administrators need be able to create, view, update, and archive information stored
in the database

Data within the database should never be deleted or destroyed, but in some way kept for future
reference

Field engineers must be able to generate/create pass and fail tickets that are emailed to the
client

Application should facilitate scheduling of employees

Red flags (notes that field engineers must take into account regarding a particular client or
project, such as an usual delivery method for pass/fail tickets or previously encountered
problems with a particular site that need special notice) should be properly related to the client
and/or project and as part of the field engineer display

Non-Functional Requirements

Application must run or be viewable on an Android tablet

Any development environment may used, as appropriate for the project

Any programming language may be used, as appropriate for the project

Measures must be taken to keep the application out of the hands of competitors of A.G.
Wassenaar

Application must have security measures to prevent tampering by outside entities

Database schema must be established such that the existing Access database components can
be related to the functions of the new application

Application should have clear and concise user interface

Database schema and organizational relationships should not be damaged or at all affected by
any actions available to application users

Deployment options for A.G. Wassenaar should be discussed with the end result of a deployed
application or an application with the means by which to be deployed in the future

System Architecture
The very basic architectural flow of the program is illustrated below (Figure 5):

Client Callsin

General Schedules
obseration
Employee
F- Id E = Performs
e I'Igll'lEEl' Observation
Obseration Obseration
Passed Failed/Cancelled
E Receives email Receives email
CIlent notification notification

Figure 5: Very basic architectural flow of proposed (and implemented) application

The design architecture used was MVC, meaning Model, View, Controller. This follows the de
facto standard of the Ruby on Rails language. The core philosophy of this architecture is to separate the
display logic (the view) from the database interface (the model), allowing users to manage the
application (through the controller).

Furthermore, the controllers conform to that of a typical RESTful framework, also standard for
Rails. A RESTful controller is converted to CRUD, the shorthand term for create, read, update, delete
functionality. Many of our controllers contain only the first three methods, leaving out the delete action
in favor of a special instance of update that we called “archive”. Using a RESTful controller helps to keep
the contained code tidy and neat, while still allowing any possible actions.

The overall database is shown below (Figure 6) and acts a good field of reference for further discussion
of application architecture:

AGWebApp domain model

—

S/ lot
project_number
state

(Role

subdivision
unit
\zipcode

4 Observation

(" Client
- 7~ Contact N\ 4 Project B (RedFlag \

PO_required hive_dat
addressl archive_date PO_per_project arch!vea e
address2 archived addressl :::scl;’i:tion
archive_date business_phone address2 Fort deccriots
archived cell_phone archive_date short_description
city ™ email archived
company_name first_name '\ block
fax is_primary building
notes last_name city
phone middle_name description
state title filing

\zipcode p

/\ﬁ
N\ Assignment

archive_date

archived

def_fee
\title

(User

name
resource_id
resource_type

Ny

confirmation_sent_at
confirmation_token
confirmed_at
current_sign_in_at
current_sign_in_ip
email
encrypted_password
first_name
invitation_accepted_at
invitation_limit
invitation_sent_at
invitation_token
invited_by_id
invited_by_type
last_name
last_sign_in_at
last_sign_in_ip
remember_created_at
reset_password_sent_at
reset_password_token
sign_in_count

\unconﬁrmed_email

Privilege

delete_all
delete_own
hatch
read_all
read_own
table_name
update_all
update_own

archive_date
archived
date

status
timeframe

&

Figure 6: Overview of database schema

An Assignment is associated with an Observation (inspection to be performed), a Project (where
to perform it), and may be associated with a User (who to perform it). Assignments also have fields
called “timeframes,” which specify when the Assignment is to take place. Each combination of these is

not necessarily unique; an observation can be re-performed by the same field engineer, at the same
location, if it had previously failed or been cancelled. The Assignments table is also non-exhaustive.

An Observation has a default fee, which is overridden in the case of price negotiations with a
client (unimplemented).

A Project is associated with a Client and three Contacts: the primary Contact, the letter Contact
(the person to which all hard copies of correspondence and documentation should be addressed), and
the billing Contact (usually the same as the primary contact). A Project must have a primary Contact
specified. All location information needed to find a project site is also stored in the Projects table.

A Red Flag is associated with either a Project or a Client. This table gives a field engineer an idea
of anything which may need to be looked at in extra detail, such as swelling soils or a client which wishes
to be contacted immediately after completing an observation.

The Contacts table is associated only with a Client. It contains information regarding how to
contact a particular person.

The Clients table contains any information which may be associated with the office of a given
client, such as name of company, business phone number, and company main office location.

A very brief and general overview of the aforementioned relational architecture is illustrated
below (Figure7):

10

=

Aclientstarts a project Users
Contacts create Red
OVErses Flags as RedFlags
projects, needed for
callingin Clients and
observations m/ Projects
as needed

Projectsrequire observations

Contacts are notified of the
results of assignments

Observation

Scheduled observations are
matched with usersto form
assignments

Assignment

Figure 7: Basic architectural flow diagram

The authentication architecture, however, is a bit more unique (though not overly so). A user
has and belongs to many roles, each of which is defined by a collection of privileges (where a privilege is
the go-ahead to access certain functionality). The administrator role is hard coded to always have all
privileges, whereas privileges can be given to or revoked from all other users. A privilege contains
abilities corresponding to the ability to create, read, update, or archive/delete an entry in a given
database table. Basically, an ability is mapped to a single CRUD action, and thus is not stored in the
database. New users can be registered on an invitation only basis, giving the administrator the ability to
restrict outside access to the application. The first measure taken to prevent unauthorized entry, and an
extremely weak one, was to declare the robots.txt file to request that this site not be included on a
search engine.

11

Technical Design

For authentication we used a combination of the Ruby Gems Devise, CanCan, and Rolify. Devise
handles basic login and logout, as well as invitations and confirmation of user email addresses. CanCan
centralizes the authentication logic in a single file which also allowed us to create a system of privileges
derived from the database. Each user may have many roles (or none at all), and the actions he or she
can perform is the combination of all the privileges that are associated with each of their roles.

After authentication, we looked toward importation. In order to import A.G. Wassenaar’s
existing data into our application’s production database three steps were necessary. First, we converted
the data to a comma-delineated file (file extension .csv). For this step we used either Access itself to
export or an open-source tool known as mdbtools. Second, we removed any characters incompatible
with utf-8, using a script utilizing “sed” (a command line string editor for *nix systems). Third, we used
Rake tasks to import and clean the data. This last step was by far the messiest, considering the fact that
the new application and the previous program (Microsoft Access) had different definitions of required
fields. As a result, unknown values were required for some of the fields that the new application
specified should not be null.

Mailing was handled through Google’s Gmail, resulting in a maximum of 500 emails outgoing
and received per day. Gmail allowed for easy use, as opposed to a system such as sendmail, which
would potentially require some server-side authentication.

The overall look and feel of the application was managed by yet another tool. Bootstrap, an
interface development toolkit from and used by the creators of Twitter, was used extensively
throughout the program. This toolkit provided built-in, simplistic, and clean user interface styling and
functionality. Specifically, Bootstrap contains HyperText Markup Language (HTML), Cascading Style
Sheets (CSS), and Javascript (in the form of twelve custom JQuery plugins) so as to encapsulate a very
wide range of design needs. The result is a uniformly colored and styled interface that has the flexibility
to be viewed properly on a number of different devices, from desktops to tablets to smartphones. For
example, an entire table can be stylized simply by adding a class, aptly named ‘table’, which is
predefined by the Bootstrap kit. Components of the Bootstrap toolkit used in this application include
typography, tables, forms, the navigation bar, alerts, working close icons for the alerts, and navigation
by tabs. Of particular note in this list are the navigation bar and the navigation by tabs. The navigation
bar collapses a specified portion of the navigation links into a button on the navigation bar when the
application is viewed at 940 pixels or less in width. This is important for use of the application on mobile
devices. Similarly, the navigation by tabs creates a clean, concise means of accessing related data in a
manner which will keep smaller screens uncluttered without compromising usability. Overall, the
Bootstrap toolkit provided an invaluable means of creating a basic, professional user interface that is
both easy to maintain and easy to use.

One gem which proved useful in the user interface was called “nested_form” and it allowed us
to create a form to edit associated objects in a more streamlined manner than previously available. This
can be observed in both the Role edit view, and the User form view. The Role form view lists all
Privileges associated with that Role and allows for the editing of them. The User view is even more
unique, displaying all Roles as check boxes, and allowing someone with proper Privileges (probably an
administrator), to grant or remove any Role from the User being edited.

12

Design and Implementation Decisions

We chose Rails for this application because of our team’s previous experience with the
framework, as well as its popularity among the web development community. Furthermore, the Rails
support community is active and helpful. The framework allows for gems, which are community created
extensions for the framework. One example of the flexibility of the Rails framework was mentioned
earlier in this report; the database schematic diagram provided is automatically generated by one such
gem. There are over 40,000 gems in existence. The Ruby language, which Rails supplements, is a high-
level language which allows for rapid development. Ruby does, however, lack somewhat in speed, but
Rails compensates for this through caching.

Authentication was handled through Devise, CanCan and Rolify because they provided a clean,
streamlined, and easy to use means of creating and maintaining authentication for the application.
These pieces of software are not only well-documented, but also very frequently and successfully used
together to create just the type of flexible, role and privilege based authentication system we were
looking for. Additionally, this combination of software is designed to interface well with the Twitter
Bootstrap toolkit. In fact, it was through research on the use of Devise, CanCan, and Rolify that we
discovered Bootstrap in the first place.

Deployment was originally intended for GoDaddy, but this was scrapped due to their lack of
support for any updates to the Ruby on Rails language issued in the last six years. Heroku was turned to
as backup means of deployment, but proved slow and unreliable for even the size of the client’s current
database. Some more tweaking may be able to remedy this.

As a result of the change in deployment option, from GoDaddy to Heroku, the database
management system also had to be changed. To begin the project we had used sqlite3, which comes
prepackaged with Ruby on Rails, but the default and strongly recommendation database system used by
Heroku is PostgreSQL, prompting us to change our application. The feature set available for PostgreSQL
is very large, more than we actually needed for this project, in fact. Actually, sglite3 would be a better
option for the smaller size that this project is. If Heroku is not used as the final means of deployment, we
recommend reverting back to sqlite3 for the performance benefits, as well as ease of use. This would
have been our next step had we had the time to complete it.

13

Results

Much more can be done on this application, such as adding Ajax forms or adding Google
assistance to the scheduling page to bring up a map of the Assignment location. A drag and drop
style system can be added to the scheduling page, as well as the addition of a more in depth
email generator. Billing could also be added, as well as a way in which to override a fee.
Improved data cleanup and import from the Access database would be beneficial. A sketching or
photo field can be added to the pass/fail side of things, and an observation form generator which
can be used in the web interface could be used. This generator would add considerable flexibility
to the site. A native Android app can be used for greater speed, and lower network usage.
Alternatively, Ajax could be used for the same purpose. Rails handles performance through
heavy caching, though the PostgreSQL database side of things is slow and could potentially
benefit from being reverted back to sqlite3.

14

Appendix

This application is designed to run on Ruby version 1.9.2 with the Rails gem version 3.2.1.
Product installation instructions will depend on the production environment deployed to. | would
recommend either a cloud based deployment or an in-house server. An in-house server would likely be
the more expensive of the two due to utilities, time to configure, maintenance, and reliability. Examples

of cloud based solutions include Heroku (free version proved unreliable), EngineYard, DreamHost, and
HostGator.

15

