Abstract |

The Toilers group is working on a system to sense environmental data, specifically the flow of contaminants in groundwater, and to use this information to create models which will predict future contaminant flow. To gather this information, the group plans to create large networks of wireless sensing devices, placed underground around spills, to monitor the chemical flows. To test this, the group will create a large experimental tank filled with sand and soil, and saltwater will be injected into the tank to simulate contamination. Sensors will be placed in the tank to detect saltwater levels, and they will periodically report their findings to a base station. Our project was to write the code to run on these sensors, and to create an interface through which a user can send commands to the network and store the sensors' data in a database.

At the start of the project, we were provided with a basic program which ran on the sensors. This program read data from the sensors' built-in voltmeters once every ten minutes and then sent its readings over the radio. By the end of the project, we integrated a large amount of code into the sensor program. In particular, we added:

- Multi-hop Communication, which allows sensors out of range of the base station to forward their data

 through closer sensors

- Time Synchronization, which keeps track of a “global time” variable which all sensors share, so that
they can add to their messages the time that the data was read

- Command Dissemination, which allows the base station to send commands through the entire
network, regardless of each sensor's distance from the base

- Event-Driven Data Collection, which helps the sensors save energy by not transmitting redundant or
unwanted data

- Changeable Sensors, so that temperature can be read instead of voltage and so that future projects will
find it easier to read contaminant levels

We also wrote a separate program which runs on the base station, a sensor plugged into a computer. This base station code installed on the sensor includes USB communication so that it can interface with the computer, and its main purpose is to forward data messages from the network into the computer and command messages from the computer to the network. A graphical user interface is the other important part of the base station code. Our user interface, shown in Figure 4, includes a reader which takes data from the base station and stores it in a file, and a window through which the user can choose commands to relay to the network.

Project Analysis |

-Background |

Toilers is a group of faculty and students at Colorado School of Mines which works with ad-hoc networks. The group is dedicated to developing wireless sensor networks (Figure 1) for use in various applications. One of these is to deploy a network of wireless sensors underground to sense groundwater contamination. Although it is not within the scope of this project to actually detect contaminants or to make the sensors ready to be placed underground, this is the Toilers' eventual goal. This type of network can be placed around factories to help monitor accidental spills and to provide information necessary to decide how best to clean them up, or to minimize their effects. Eventually, this information may even help with the creation of a practical model for contaminant flow, so that the movements of future spills can be predicted without requiring an actual sensor network. To realize this goal, code must be written to tell the sensors what to do, and our group has been asked to write and integrate portions of this code. A basic program had been written to run on the sensors, which reads values from the on-board sensors and sends them over the radio. Our project was to add various components to this program: time synchronization, multi-hop data collection and command dissemination, a graphical interface for a user to interact with the sensor network, event-driven data collection, and the ability to sense data other than temperature. This required us to learn nesC, a language derived from C which is used to program sensors because of its modularity and simplicity.

-Provided Code |

The sensor program which was provided had little functionality, but what it did have was important. Each sensor had an internal timer, which was set to fire at certain intervals and tell the sensor to take a reading from its built-in voltmeter. After the sensor read a value, it sent that value over the radio. Code written in an older, incompatible version of nesC was also provided which ran on the base station. This code was meant to receive data over the radio from sensors within its radio range, and it turned on lights depending on which sensor it last received a message from. Most of our project built off of this program; we kept the parts that worked and added in the extra pieces of code that we needed.

-TinyOS and nesC |

The wireless sensors that we are using contain an operating system called TinyOS. This is a very basic system which is designed to conserve power while making sure that all tasks that need to be run are eventually scheduled. Code for the sensors is written in a language called nesC. At a basic level, nesC is an event-driven language, as all functions are called in response to either some external event (the radio receives a message, for instance) or to some other code which signals that that function should be executed next. However, nesC is also designed to facilitate modular programming. A large repository of library code exists which can be integrated into existing code in much the same way building blocks are put together: after downloading the new module, one must simply state where the module should be included in the existing project and its code can be called. Though many of these modules are not yet perfected, most of the sensor code necessary to our project has already been written and is available for download. Much of our project consisted of finding the modules we needed on the TinyOS CVS repository (where most libraries for wireless sensor networks are stored), and then finishing and debugging the downloaded code.

-Multi-Hop Data Collection |

The multi-hop protocol is probably the most important functionality of the sensor code, because without it, large sensor networks are not possible. The radio range of a sensor is around fifty feet through air, and it will be less if the radios need to send data underground through soil and water. If sensor A is placed more than fifty feet away from the base station and the multi-hop protocol is not implemented, the base station will never receive any data that the sensor sends. However, if multi-hop communication is included, the base station will still be out of range of sensor A, but sensor B might be halfway between A and the base and in range of both. Then, sensor B will receive the message from A and act as an in-between to forward sensor A's message to the base. In Figure 1, the middle sensor forwards messages from the two sensors on the left to the base station using the multi-hop protocol.

-Multi-Hop Command Dissemination |

The second half of the multi-hop protocol is referred to as dissemination. Someone in charge of monitoring the sensor network may want to make changes to how the sensors run. Instead of going out into the field and digging up sensors to recompile and reinstall the code on each one, that person can use our program to send a command over the radio and tell the sensors to update themselves. Again, without a method for retransmission, sensors out of range will be unable to receive these commands. The dissemination protocol causes a sensor to broadcast a copy of any command messages it receives before executing the command itself. However, dissemination is slightly more difficult than data collection, because sometimes the user might want only sensor A to do something. In this situation, commands are marked with the ID of the sensor that should execute them.

-Time Synchronization |

Occasionally, with the multi-hop implementation, sensor B might be sending data to the base when sensor A wants to start sending data as well. The multi-hop protocol takes care of this; it tells sensor A to wait for a while and then try sending the data again. But if sensor A waits, then its data will make it to the base station significantly later than the reading was taken. When the data collected by the network is used to create predictions, delays such as these could cause major problems if the prediction is created using the time that readings were sent in. There is another protocol, called time synchronization, that would ensure that the base knows what time a reading was taken as opposed to when the reading was received. Basically, every half-hour or so, the base station sends a message to all the sensors telling them what time it is (to minimize the effects of clocks running fast or slow). Then, along with each data message that is sent to the base station, each sensor transmits the time the reading was taken. The net effect of this is that when the base station receives data, it knows when the data was created as opposed to when it was received.

-Event-Driven Data Collection |

Another limitation of sensors buried underground is their power consumption. The sensors we were given to test use two AA batteries. Considering that the sensors will not be easily accessible, it is good to lower their power consumption as much as possible. Sending messages over the radio takes a relatively large amount of power, so one way to make sensors more efficient is to tell them to send messages only if the data meets some criterion (Figure 2). For instance, if the last reading the sensor took is almost exactly the same as the one before that, the sensor should just not send a message, and the base station can assume that the data didn't change significantly. Since groundwater contamination levels don't vary rapidly, a sensor might take a reading every minute but only report values every half hour or so, saving a great deal of battery power. Two types of event-driven data collection are possible and logical for this project: variance-related, where data is not sent if it is very close to the last reading transmitted; and threshold-related, where data is not sent if it is not high enough to be worth sending. Both types are included in our code.

-User Interface |

Finally, a user needs to be able to interact with the sensor network. Each sensor, including the base station, has two buttons, three lights, and a USB port (Figure 6). Because there's not much that a person can do in the way of changing a network by pressing two buttons and watching three lights, especially if the sensors are all buried twenty feet underground, the USB port has to be the interface between the base station and the user. The base station can receive and send values through the USB, and it is programmed to transmit the values it receives to the other, inaccessible sensors. Our group has been asked to create an interface, preferably a graphical one, which displays the received sensor readings and stores them in a database, and which also allows a user to send commands over the network. We have programmed a Windows application using Visual C++ which includes a list of the sensors that we can send readings to, a group of buttons which represent the commands that can be sent, and a set of text boxes that display the last readings sent to the base station. The readings that are sent are also stored in a text file, so that it will be easy to create a MySQL database from them in the future.

Project Design |

-Overview – Sensor Code |

Due to the design of nesC, a typical wireless sensor program consists of one top-level “master” module, connected through interfaces to various lower-level components, which may themselves contain other components. The main modules that we have included are the Flooding Time Synchronization Protocol, to provide sensors with a common “global time” which they add to their data messages when a reading is taken; the Collection Tree Protocol (CTP), which forwards messages to the base station through other sensors so that nodes far away from the base can still provide data; and the Disseminator, which ensures that all sensors have the same copy of a certain variable. This will be used to disseminate the command messages described below; when the user wants to send a command, that command is sent to the base station, which then changes the value of the Disseminator. The Disseminator takes care of sending the new value over the radio, and when a sensor receives this new value, it retransmits the message and checks to see if the command was meant for it.

-Top-Level Sensor Code |

By design, nesC is an event-driven programming language. Nothing happens in a nesC program unless some component signals it. The main signalling parts of our code are two Timer objects and the Disseminator. The SensorTimer is set to signal every 10 minutes initially, but this can be changed by the user. When this timer fires, it starts the second timer, the CheckTimer, with a period of half a second. The CheckTimer takes a reading each time it fires, and after a certain number of readings (initially 1, also changeable by the user), it averages the readings together and sends the average through the Collection Tree Protocol, also including the time that the last reading was taken. The CTP takes care of sending the message to the base station.

The Disseminator is the other component which starts important functions. As described below, the Disseminator keeps track of a single variable, in our case a command message structure. When this value is changed, the Disseminator tells the top-level program, which looks at the new command and executes it if necessary.

-Collection Tree Protocol |

Implementing the Collection Tree Protocol was one of the more difficult tasks in terms of coding, but probably the easiest in terms of editing to fit our project. The CTP module replaces the message sender in the original, provided program, and it includes code to retransmit messages towards the base station. The part of the CTP module that the sensors run adds extra information to messages that the sensors want to send, and then it transmits the messages over the radio. When a sensor in the field receives a CTP message, the top-level program is never notified; the module automatically updates any necessary information and re-sends the message. The base station, on the other hand, contains a function to tell the CTP that it wants to receive messages. When it receives a message, it is notified and deals with the message appropriately. This behavior is exactly what we wanted for our project, so we did not need to edit the CTP once it was working. However, the TinyOS repository was missing a large number of important files for this module, and figuring out what these files did and how to rewrite them took a significant amount of time and effort.

-Time Synchronization |

The Flooding Time Synchronization (FTS) library included in the TinyOS CVS repository was the time synchronization module that we chose to use. The original FTS code is meant to be installed on both the base station and on the sensors in the field, and uses the concept of “roots”. If a sensor has not heard from a root before a certain period of time has elapsed, it becomes a root itself and believes that its own clock (its “local time”) is perfectly correct and equal to the time that all sensors should hear (the “global time”). It then sends out messages stating what time it is, and when other sensors hear these messages, they perform a calculation that tells them the difference between the root's time and their own. Using this calculation, they can figure out what time their root thinks it is, and then they send out their own messages with the global time so that sensors further away from the root can calculate global time as well. If two sensors become roots, the one with the lower ID number eventually wins out as the “real” root.

For our project, we changed the FTS code significantly. We did not want any random sensor to become a root, so we disabled the section of code that turned a sensor into a root on all sensors except the base mote. We also greatly lengthened the period of time between updates. Since the sensors' global times stay quite close together for more than half an hour, an update every fifteen seconds was unnecessary. Finally, we added code to send a message once every five seconds for a minute when the user requests it, as adding or resetting sensors causes them to desynchronize and the new half-hour period between messages is too long to wait for a mote to recalculate the global time.

-Event-Driven Data Collection and Idle Timer |

Each sensor stores two variables, called Variance and Threshold. Whenever it takes a reading, the sensor checks the reading against these two variables and the last reading it sent. If the new reading is lower than Threshold, the sensor does not send a message. Likewise, if the difference between the new reading and the last reading it sent is less than Variance, the new reading is also not sent. Creating new messages takes a relatively large amount of processor time and power, so these checks help conserve energy. If the sensor has taken no readings worth sending in a large period of time (by default 8 sensor periods), the sensor enters an idle mode. In this state, its SensorTimer fires much less frequently because it assumes it will read no new data for a long time. When the sensor reads “interesting” data again, it exits its idle mode and begins reading with its default frequency again.

-Command Dissemination |

Command dissemination is somewhat the opposite of the collection tree. Where CTP receives messages from sensors and forwards them toward the base station, dissemination receives a message from a sensor, in our case the base station, and distributes it throughout the entire network. Each sensor uses the same instance of the Disseminator module, and each instance of the module contains a single variable. Usually, Disseminators are used to hold the value of a single piece of data, such as an integer. In our project, however, the Disseminator contains an entire command message, as shown in Figure 1(a). When the user wants to send a command, the command is sent through the USB port to the base station, which changes the value of the Disseminator's command message and transmits the new message over the radio. All the sensors receive the new command, and they check the command's destination ID field to decide whether or not it was meant for them. An ID of 0 means that the command should be executed by all sensors; any other ID refers to a single sensor number. If a sensor does decide to execute a message, it then checks the command type field to see which command was sent, and if necessary, it looks at the new value field as extra data.

-Thermometer |

At the beginning of our project, the sensors were configured to detect the voltage across their batteries, or across the USB port if the batteries are not attached. However, the motes' specification sheet states that each has a built-in photometer and a temperature/humidity sensor as well as a voltmeter. Eventually, the sensors should be set up to read from an external contaminant detector, but this is not within the scope of the project. Sending readings using the other on-board sensors would help both us and future programmers with testing, so we looked into integrating the photometer and thermometer sensors into our project. Unfortunately, we were unable to find a complete block of code to sense from the photometer, and too much was missing for us to fill in the rest. The thermometer code, on the other hand, was provided in full on the CVS repository, and we have successfully configured the sensors to read temperature. The sensors are not calibrated, but the large amounts of tests necessary to find the proper formula for each individual sensor are outside the scope of this project. Even without calibration, we can see the temperature values increase if we hold the sensors in our hands and decrease if we surround them by ice packs. This functionality made testing other parts of our code, such as event-driven data collection, much easier.

-Message Format |

Much of our project revolves around sending messages. Sensors read data and construct a message; they then send that message over the radio through other sensors and eventually to the base station, where the radio message is converted into a serial message and sent to the computer. Commands start as serial messages; they are then converted into Dissemination messages after they reach the base mote and are sent through the network. NesC provides a very abstract message data type called “message_t”, which includes three or four fields: a header consisting of the length of the message and a couple other bookkeeping fields, a large data section which can be dynamically configured to hold many different information structures, and a footer and possibly a metadata section to store information about the message. These fields all use an “external structure protocol” - all values are big-endian and all structures are ordered the same way. Our application sends all necessary information by placing it in the data section of the message_t. Currently, we have implemented two types of messages that we need to send: a data message and a command message. Future projects may wish to add other types, such as an acknowledgment message and/or a sensor-information message. The data sections of our messages are shown graphically in Figure 3, with example information in each. All bytes are sent largest-bit-first, and the messages are sent from top to bottom as shown in the picture.

Messages are sent over the serial port using a combination of the High-level Data Link Control protocol, widely used in networking, and a virtually undocumented TinyOS-specific protocol. The HDLC protocol is described fully in the International Organization for Standardization's document ISO 13239. The TinyOS format includes a byte preceding the data equal to 69 if the packet should not be acknowledged, 68 if it should, or 67 if the packet is an acknowledgment of some previous message. After this byte, a TinyOS serial header is added, stating information such as the destination of the message, its length, and its type (is it a command or a data message, or something else?). Finally, the data itself is placed in the message. Examples of the two types of serial messages are attached in Figure 5, with one byte per line. Each byte's section and meaning is included in parentheses. Radio messages are similar to these, but our project does not deal directly with radio message format.

Base Station Code |

The base station uses all of the modules included in the sensors, with the exception of timers and the thermometer. It also contains a USB-communication module. Despite having all these components, the base station's code is much simpler than the sensors'. When a data message is received over the CTP, the base station puts that message into a queue. It then runs a function that takes one message out of the queue at a time and sends it over the USB to the computer. The queue can hold up to twenty messages, but it is doubtful that it would ever fill up. Similarly, when a command message is received via the USB, the command is placed into another queue and then is read. The base station changes the value of the Disseminator to contain the new command, and the Disseminator sends the command to the network by radio. Basically, the base station simply acts as an interface between the computer and the network.

User Interface |

We have written our user interface code using Microsoft Visual C++, taking advantage of its large libraries for serial communication and graphical windows. A picture of our user interface is shown in Figure 4(a). Because the program is useless when the base mote is not plugged into the computer's USB port, we require it to be attached before the program will start. When it starts up, the GUI sends a Synchronize Time command to the network, to ensure that all sensors have the proper global time. Every thirty minutes, another Synchronize Time command is sent. After the first of these commands is sent, the program is available for use.

-Use Case |

Our user, “Alex”, starts the program, and the program starts synchronizing the sensors. After they become synchronized, the sensors start their timers to fire when the global time equals 10 minutes. Alex wishes to take readings less often, so he checks the Select All checkbox and then clicks the Change Time Between Readings button. The window in Figure 4(b) pops up, and he types 20 into the Minutes text box and clicks Update. All of the sensors then set their timers to fire when the global time equals 20 minutes. Alex also clicks the Change Send Threshold button and types 2900 into the window shown in Figure 4(c) when it pops up, so that the sensors won't send data unless their reading is higher than 2900. He then goes home for the night. When he comes back the next morning, he wants to see the sensors' values, so he clicks the Display Most Recent Messages button on the menu in the main window, and the text boxes on the right of the window fill in their values. Alex notices that most of the sensors have a reading and a time displayed, but sensors 3 and 11 still show a reading and time of 0. Curious, he unchecks the Select All box and checks boxes 3 and 11, and clicks the Send Last Reading button. After telling the program to display the most recent messages again, he sees that sensor 11 sent back a reading of 2880, taken six minutes ago. He assumes that sensor 11 never read a value of more than 2900, so it never sent a message. Sensor 3 did not send a new message, so Alex checks the sensor, and sees that its batteries are dead. He replaces the batteries and puts sensor 3 back. Then, he unchecks box 11, so that only 3 is checked, and clicks Take a Reading. Sensor 3 sends a reading of 2960 and a time of midnight. The time is obviously incorrect, and Alex remembers that sensor 3's time isn't synchronized with the base mote's, since sensor 3 lost power. He clicks Synchronize Time, and after waiting about twenty seconds for the sensors to synchronize, he tells sensor 3 to take another reading. This time, it sends a reading of 2962 and a time close to the time on his computer.

-USB Interface |

At a lower level, the user interface program uses two threads. The main thread controls the windows and sending commands to the base station, using Visual C++'s SerialPort class. The second thread's purpose is to read from the USB port and write the values it receives to the user interface and to a file. This second thread was necessary because the computer has no way of knowing when the base station will send a message, short of constantly polling the USB port to see if a message has been sent. We briefly tried this approach, but the delay it caused in our program (upwards of ten seconds before a window opened, more often than not) would be too annoying for the end user to deal with. Because of this, we added a second thread whose purpose is to wait for data to be sent over the port and process it when it arrives. Because the operating system sends an interrupt when data is received, this second thread doesn't waste processing power and time while no data is in the receive buffer, and it can read messages more promptly than our original design could have.

Earlier, we believed that communication between a USB device and a computer would be difficult to implement, as the USB protocol is very complicated and the details of how the base station sends data are not easy to find. However, we discovered that when a sensor is plugged into the USB port of a Windows computer to which we have administrative access, the computer automatically downloads and installs software which causes the USB port to act like a serial port. Serial ports are relatively easy to use, especially through the Visual C++ SerialPort class, so the problem has been more or less solved. At the moment, our user interface class can only run on a computer with the USB->serial software installed, which we feel is a reasonable limitation.

-Data Storage |

Our program stores data in a text file. When the USB interface thread of our program reads a data message, it tells the user interface about the new values so that they can be displayed. It also writes the information to a file, to keep records. Each line of the file consists of: the ID number of the sensor which sent the message, the data value which the sensor read, the time (in HH:MM:SS format) that the reading was taken, and a more human-readable time value stating when the message was received. Storing this information will be a very important part of the system in the long run, because not only will the data provide ideas about how the environment changes around the sensors, but the Toilers group hopes that practical models of future changes can be created using the sensor readings. Storing the data coherently in a database is a large step in that direction.

Conclusions |

After extensive testing, we have found that the code we have written for the sensors provides a solid foundation for future work. The event-driven data transmission section will probably remain virtually unchanged through many revisions of our code. The CTP module that we downloaded has already undergone much real-world testing, and the files which we had to rewrite for this module should not have changed the underlying algorithm. Packets are very rarely dropped when sent over the CTP, and a bit of code to introduce varying latency into the sensors has resulted in nearly every message sent reaching the base station. Our command-disseminating code has proven to be somewhat unreliable when many messages are sent out close to one another; sometimes a small percentage of these messages do not reach their intended locations. In a small network, this is not a difficult event to detect, but larger networks may have problems with this. Future work might include implementing a command-acknowledgment protocol, possibly based on the CTP, which could ensure that if a message is not received, the base station knows and can send the message again. Time synchronization has also caused some small problems; in particular, sensors seem to become unsynchronized after an extended period of time. This, however, has not been seen since we changed the base mote to synchronize the network every half-hour.

Our user interface is more specialized than the sensor code. Currently, we only include functionality for twenty sensors plus one base mote. For this project, this is not a problem, as Toilers wishes to use our program to test contamination flow in a small tank instead of directly deploying a large network of hundreds of sensors. However, when sensor networks become commercially viable for large-scale environmental modeling, our user interface will undoubtedly need modifications, if not a complete re-write. Because this field session project is part of a long-term, evolving system, we expect much of our product to be edited and eventually remade over time. What we have done, however, is a large step towards the final goal of practical, reliable sensor networking.

Future Work |

Our program is a large step towards practical large sensor networks, but it is by no means a final product ready for commercial use. Some of the changes that should be implemented are:

· Integrating a contaminant sensor instead of the thermometer currently in place (Sensors)

· Adding a database, or creating a program that turns the current text file into a database (UI)

· Adding code to detect and deal with erroneous messages, if they are received (UI)

· Acknowledging commands sent, if necessary (Sensors)

· Updating the display whenever a new message is read (UI)

· Creating functionality for an arbitrary number of sensors instead of our fixed 20 (UI, for large sensor networks only)

Helpful Hints |

Firstly, and probably most importantly, do not ever assume that anything will go right in a project like this one. Allow at least an extra day for any task, or two days if the task looks difficult. This is especially true for large sections of code found on the Internet; remember that the code will not work and that you will have to spend an eighteen-hour day debugging it and/or writing files that the original author forgot to include. Every module that we downloaded had problems like this. It will happen; be prepared.

Related to this, try to make the code that you write as descriptive and as clean as possible. We were forced to read through all fifty-six printed pages of the Collection Tree Protocol code, all twenty-some of the Flooding Time Synchronization code, and quite a few low-level sensor-reading modules. Comments really do help. Because your code will probably be used by other people, please, please don't put variables named local_offset, temp_local_offset, offset, temp_offset, total_offset, and global_offset all in the same function unless you put in a comment saying which one does what and which ones are important.

[image: image1]Figure 1:

A sensor network. Because the green and blue sensors are out of range of the base station, the red sensor relays messages between them.

Figure 2:

[image: image2.emf]Event-Driven Data Collection. A reading is taken at every vertical line. The red circles denote readings which were actually sent. The horizontal green bar represents the threshold below which no readings are sent, and the small vertical green bars at each reading represent the variance that the next reading has to exceed before it gets sent.

Figure 3:

(a) - Command Message:

(b) - Data Message:

(Tell Sensor 3 to change its threshold to

(Sensor 1 read the value 32007 exactly 10

1040)

minutes after the base mote was plugged in)

+=========================+

+=========================+

| 0 (ID number of |

| 0 (ID number of |

| destination sensor) |

| source sensor) |

| 3 |

| 1 |

+-------------------------+

+-------------------------+

| 21 (Code for CH_THRESH) |

| 1 (Time sent. |

+-------------------------+

| 19660800 clock ticks|

| 0 (New value. |

| 44 have passed since |

| Threshold is a 16- |

| base mote started, |

| 0 bit integer, so |

| 0 at a clock speed of |

| only the last two |

| 32kHz. 19660800 = |

| 4 bytes are read. |

| 80 256³ + 44*256² + 80 |

| 1040 = 4 * 256 |

+-------------------------+

+=========================+

| 125 (Reading. 32007 = |

| 125 * 256 + 7) |

| 7 |

+=========================+

Figure 4:

[image: image3.emf]
(a) – The main window

(b) – The window that comes up when Change Time Between Readings is clicked

[image: image4.png]File Display Most Recent Messages
Sensors

as

Change Time Between Readings

Change Readings Averaged

Change Send Threshold

Change Send Varance.

Change Number of Readings Urti Ide

Time Between Readngs to Average

Synchronize Time (Al Motes)

(c) – The window that comes up when Change Send Threshold is clicked – the other windows look similar to this one

[image: image5.png]

Figure 5:

Serial Packet Command Format:

Serial Packet Data Format:

Send command “Change Threshold to 1040”

Sensor 1 read the value 32007 exactly 10

to Sensor 3

minutes after the base mote was started

+=========================+

+=========================+

| 126 (HDLC, start msg) |

| 126 (HDLC, start msg) |

+=========================+

+=========================+

| 68 (TinyOS, acknowledge)|

| 69 (TinyOS, don't ack) |

+-------------------------+

+-------------------------+

| 0 (TinyOS, serial msg) |

| 0 (TinyOS, serial msg) |

+=========================+

+=========================+

| 255 (Serial, Broadcast |

| 255 (Serial, Broadcast |

| Address – not |

| Address – not |

| 255 necessary here) |

| 255 necessary here) |

+-------------------------+

+-------------------------+

| 0 (Serial, Source |

| 0 (Serial, Source |

| Address – also not |

| Address – also not |

| 0 necessary) |

| 0 necessary) |

+-------------------------+

+-------------------------+

| 8 (Serial, command msg) |

| 7 (Serial, data msg) |

+-------------------------+

+-------------------------+

| 0 (Serial, see note 1) |

| 0 (Serial, see note 1) |

+-------------------------+

+-------------------------+

| 2 (Serial, ignored) |

| 2 (Serial, ignored) |

+=========================+

+=========================+

| 0 (Data, ID number of |

| 0 (Data, ID number of |

| destination sensor) |

| source sensor) |

| 3 |

| 1 |

+-------------------------+

+-------------------------+

| 21 (Data, CH_THRESHOLD) |

| 1 (Data, Time sent. |

+-------------------------+

| 19660800 clock ticks|

| 0 (Data, New value. |

| 44 have passed since |

| Threshold is a 16- |

| base mote started, |

| 0 bit integer, so |

| 0 at a clock speed of |

| only the last two |

| 32kHz. 19660800 = |

| 4 bytes are read. |

| 80 256³ + 44*256² + 80 |

| 1040 = 4 * 256 |

+-------------------------|

| 16 + 16. |

| 125 (HDLC, Escape byte) |

+=========================+

+-------------------------+

| 208 (HDLC, Error check. |

| 93 (Data, see note 2. |

| Calculated using |

| Reading. 32007 = |

| 40 the message.) |

| 7 125 * 256 + 7 |

+-------------------------+

+=========================+

| 126 (HDLC, end msg) |

| 2 (HDLC, Error check. |

+=========================+

| Calculated using |

| 24 the message.) |

+-------------------------+

| 126 (HDLC, end msg) |

+=========================+

Note 1: The TinyOS Serial modules can send and receive many types of messages, and they are sent to different processing functions depending on this byte. This says to send it to function 0 (the only one currently used by our program).

Note 2: The values 125 and 126 are reserved by HDLC. If an application wants to send either of these, instead it sends 125 followed by 93 or 94 (the original value minus 32). The receiver sees the 125 and adds 32 to the next bit to get the true value.

Figure 6:

A TelosB mote

[image: image7.jpg]

[image: image6.png]Update.

