
Department of Computer Science

Colorado School of Mines

CSM# 2

A Method for Approximating
Ground-state Wave Functions of

Schrödinger’s Equation

Authors:
Jonathan Hendricks,
Thomas Cullison

Client:
Scott Strong

Adviser:
Dr. Roman Tankelevich

June 18, 2008

Final Report - CSM#2: Quantum Physics 1

Contents

1 Introduction 2
1.1 Objective . 2
1.2 Background . 2

2 Requirements and Specifications 3
2.1 Non-Functional Requirements . 3
2.2 Functional Requirements . 4

3 Design and Solution Approach 5
3.1 Theoretical Solution Approach . 5
3.2 Computational Solution Approach . 7
3.3 Software Design . 9

3.3.1 Computational Software Design . 10
3.3.2 GUI Software Design . 11

4 Implementation 11
4.1 Computational Implementation . 12
4.2 GUI Implementation . 13

5 Results 13

6 Conclusion 15

7 Future Work 15

References 17

Appendices 18

A Hermite Integral Equations 18

B Figures 20

Final Report - CSM#2: Quantum Physics 2

Abstract

The goal of this project was to develop a MATLAB software package that when given
an eigenfunction basis (i.e. Hermite and Legendre polynomials, or sines and cosines),
can approximate a strict upper-bound on the ground state energy of the linear and
nonlinear time independent Schrödinger equations for arbitrary potential functions;
furthermore, to develop an algorithm to minimize the ground state energy, and to
numerically and graphically display the resulting probability density functions. The
evaluating algorithm incorporates the variational principle and Lagrange multipliers
to determine the coefficients of a bounding eigenbasis. The results are reported nu-
merically and graphically via a graphical user interface (GUI), and multiple physically
motivated cases (different potential wells) were analyzed.

Key words. Bose-Einstein condensate, variational principle, nonlinear Schrödinger
equation, Hermite polynomials, eigenbasis functions, Hamiltonian.

1 Introduction

1.1 Objective

The objective of this project is to develop a MATLAB program that can approximate a
strict upper-bound on the ground state energy of the linear and nonlinear time independent
Schrödinger equations for arbitrary potential functions.

1.2 Background

The variational principle of quantum mechanics allows us to place an upper-bound on the
ground-state energy Eg for a system described by the Hamiltonian Ĥ, for any normalized
function ψ(x) [1].

Eg ≤
∫ ∞
−∞

ψ(x)Ĥψ(x)dx ≡ 〈H〉 (1.1)

To do this we will use eigenfunctions of Ĥ that form an orthonormal basis of solutions to
Schrödinger’s equation.

ψ =
∞∑
n=0

anψn, with Hψn = Enψn (1.2)

Specifically, we will be examining the Hermite Polynomial eigenbasis for infinite domains.
We seek to minimize the constants an with respect to Equation 1.1 in order to obtain a strict
upper-bound of the ground state energy.

Example: Define the linear Hamiltonian operator

Final Report - CSM#2: Quantum Physics 3

HL =
~2b

2m

d2

dx2
+

1

2
mω2x2 (1.3)

assuming a Gaussian wave function

ψ(x) = Ae−bx
2

, (1.4)

where b is a constant which we seek to minimize and A = (2b
π

)1/4, as determined by normal-
ization. Using Equation 1.2 we find that∫ ∞

−∞
ψ(x)HL(x)ψ(x)dx =

~2b

2m
+
mω2

8b
= F (b). (1.5)

According to the variational principle, F (b) exceeds Eg for any b. To obtain the tightest
bounds we will find the minimum of F (b) by using the second derivative test

d

db
F (b) =

~2

2m
− mω2

8b2
= 0⇒ b =

mω

2~
. (1.6)

Placing b back into Equation 1.6 we find that 〈H〉 = 1
2
~ω, which happens to be the ground-

state energy for the given potential [1]. In most cases, however, we will not choose the
trial function with precisely the form of the actual ground state. Also note that when using
Hermite Polynomials, we will have a system of n coefficients to minimize, which will require
multivariate calculus to solve.

2 Requirements and Specifications

2.1 Non-Functional Requirements

1. Analytically solve as much of the problem as possible

(a) Research and understand methods for analytically solving partial differential equa-
tions (e.g. power series solutions and separation of variables)

(b) Research and understand the linear and nonlinear Schrödinger equations, the
variational principle, Hermite polynomials, and function orthogonality principles
and theory

2. Provide a user interface for the program that:

(a) accepts a parameter for truncation of the ψ(x) expansion approximation (Equa-
tion 1.4)

(b) accepts an arbitrary potential function as a parameter

(c) can be updated to include various eigenfunction bases that can be used for the
ψ(x) expansion approximations

3. a graphical user interface (GUI) with the similar functionality described above

Final Report - CSM#2: Quantum Physics 4

2.2 Functional Requirements

1. Submit a working MATLAB program that computes and plots an approximated ground-
state wave equation based on the following user provided parameters:

(a) an arbitrary potential function

(b) the desired expansion approximation order

(c) the ability to approximate ψ(x) using different eigenfunction basis expansions

2. Program must accept a user defined potential function that is defined using the MAT-
LAB function format

(a) The program derives the Hamiltonian operator from the provided or selected
potential function

3. Program must accept a user provided approximation truncation order value (i.e. a0 +
a1x+ a2x

2 is 2nd order)

4. Time permitting, the program must allow ψ(x) to be expanded using different eigen-
function bases (i.e. Hermite polynomials vs. Legendre polynomials)

(a) The user selects an expansion approximation eigenfunction basis

(b) The program derives/uses the expectation function that is appropriate for the
selected eigenfunction basis

(a) The user must provide/select an expansion approximation order that is a positive
integer

(b) The program derives/uses the appropriate expectation approximation function of
the provided/selected order

5. Program must minimize the coefficients of the expectation function

(a) The program must solve for the set of coefficients that correspond to the Lagrange
multipliers minimization constraint (Equation 3.8)

6. Program must display the approximated ground-state wave equation

(a) The program must display at the coefficients of the approximated ground-state
wave equation

7. Program must plot the probability distribution functions.

(a) The program must plot the probability distribution functions that are calculated

(b) The program must plot the probability distribution functions that correspond to
the minimum and maximum energy states

8. Program (GUI) can plot general shape of the user provided/selected potential function

Final Report - CSM#2: Quantum Physics 5

3 Design and Solution Approach

To meet the goals of this project, we had two solution approaches. The first approach was a
theoretical approach, and the second approach was a computational approach which required
that we develop software to perform computations and then display the results. The purpose
of the theoretical approach was to analytically simplify, verify, and get into programmable
form the mathematical theory and equations involved in approximating the ground-state
energy of the linear and nonlinear time-independent Schrödinger equations.

Once the mathematics were simplified and verified, numerical computation was needed
to evaluate integrals and to solve for eigenvectors; furthermore, the final results needed to be
displayed as well. Therefore, the purpose of the second approach was to develop software to
perform the needed numerical computations and to display the final results including plots
of the calculated probability distribution functions and the coefficients of the corresponding
wave equations. Per the clients request, the software was developed using MATLAB.

3.1 Theoretical Solution Approach

Methods for approximating the upper-bounds of the ground-state energy using the nonlin-
ear time independent Schrödinger equation were explored; however, an adequate method for
finding the upper-bounds was elusive, and due to time constraints, the search for a nonlinear
method was abandoned. Therefore, the focus of our project has been mostly on finding
upper-bounds using the linear time independent Schrödinger equation.

Starting from the Schrödinger’s equation we have,

Ĥψ = Eψ, (3.1)

where

Ĥ = − ~
2m

∂2

∂x2
+ V (x). (3.2)

Because the eigenfunctions of Ĥ form a complete set, ψ(x) can be expressed as a linear
combinations of these functions

ψ(x) =
∞∑
n=0

anψn, (3.3)

where ψ(x) is any normalized function such that 〈ψ|ψ〉 = 1 with respect to whatever inner
product the space is endowed with. From the variational principle we have

Eg ≤ 〈H〉 = 〈ψ|H|ψ〉 , (3.4)

where Eg is the ground state energy. Under the Hermite basis

Final Report - CSM#2: Quantum Physics 6

ψ(x) =
∞∑
n=0

an
1√

n!2n
√
π
e−x

2/2Hn(x) =
∞∑
n=0

anen(x), (3.5)

where Hn(x) is a Hermite Polynomial of degree n. By substituting the Hermite Basis into
the variational principle, we can bound the ground-state energy with

〈H〉 = 〈ψ|H |ψ〉 =

∫ ∞
−∞

[
∞∑
n=0

anen(x)

]
Ĥ

[
∞∑
m=0

amen(x)

]
e−x

2

dx

=
∞∑
n=0

an

∞∑
m=0

am

∫ ∞
−∞

en(x)Ĥem(x)e−x
2

dx

=
∞∑
n=0

an

∞∑
m=0

amCnm,

(3.6)

where

Cmn =

∫ ∞
−∞

en(x)Ĥiem(x)e−x
2

dx. (3.7)

Now we seek to minimize the coefficients of 〈H〉 in order to place strict bounds to the ground
state energy. To do this, we will use Lagrange multipliers

∇F = λ∇G (3.8)

with F (a0, a1, ..., aN) = 〈H〉, and a constraint function, G, which uses the fact that ψ(x)
is a normalized function (i.e. 〈ψ|ψ〉 = 1). Exploiting the orthogonality of the normalized
Hermite Basis en(x), we see that∫ ∞

−∞
ψ(x)ψ(x) =

∫ ∞
−∞

∞∑
n=0

anen(x)
∞∑
m=0

amem(x)dx

=
∞∑
n=0

an

∞∑
m=0

am

∫ ∞
−∞

en(x)em(x)dx

=
∞∑
n=0

a2
n = 1.

(3.9)

This gives us our constraint function

G(a0, a1, ..., aN) =
∞∑
n=0

a2
n = 1. (3.10)

Taking the gradient of F = 〈H〉 with respect to ai gives

Final Report - CSM#2: Quantum Physics 7

[∇F (a0, a1, ..., aN)]i =
∂

∂ai

[
∞∑
n=0

an

]
∞∑
m=0

amCmn +
∂

∂ai

[
∞∑
n=0

am

]
∞∑
n=0

anCmn

=
∞∑
m=0

amCim +
∞∑
n=0

anCni.

(3.11)

Then, by reindexing such that j = m,n, Equation 3.11 can be rewritten as:

∞∑
j=0

aj {Cij + Cji} = [∇F (a0, a1, ..., aN)]i . (3.12)

This defines a linear system:

∇F (a0, a1, ..., aN) = D~a, ~a = [a1 · · · aN]T (3.13)

where

D =

D00 D01 · · · D0N

D10 D11 · · · D1N
...

...
. . .

...
DN0 DN1 · · · DNN

 . (3.14)

and

Dij = Cij + Cji (3.15)

Now taking the gradient of G(a0, a1, ..., aN) with respect to ai gives

[∇G]i =
∂

∂ai

(
∞∑
n=0

a2
n

)
= 2ai (3.16)

Therefore,

∇F = λ∇G ⇔ D~a = λ2~a (3.17)

which is an eigenvalue problem, we can solve for the unknown eigenvectors ~a. To find out
which of these vectors is the global minimum, we will plug the constants into Equation 3.6
and see which vector gives the tightest bound on the ground state energy.

3.2 Computational Solution Approach

When calculating the D matrix (Equation 3.14), the critical points of 〈H〉 need to be deter-
mined. To determine these, we consider the equation

Final Report - CSM#2: Quantum Physics 8

Dmn =

∫ ∞
−∞

en(x)Ĥem(x)e−x
2

dx. (3.18)

This calculation can be costly when using only numerical integration techniques. To reduce
the number of calculations, we start by separating the integral into several parts. First, we
will consider the dimensionless form of the linear Hamiltonian Ĥ which can be written as

Ĥ = − ∂2

∂x2
+ V (x). (3.19)

Pulling out the constants and inserting Ĥ into Equation 3.18 yields

Dmn =

∫ ∞
−∞

en(x)Ĥem(x)e−x
2

dx

=

∫ ∞
−∞

Hn(x)√
n!2n
√
π
Ĥ

Hm(x)√
m!2m

√
π
e−x

2

dx

= K(n,m)

∫ ∞
−∞

Hn(x)

(
− ∂2

∂x2
+ V (x)

)
Hm(x)e−x

2

dx

(3.20)

where

K(n,m) =
1√

πn!m!2n+m
. (3.21)

When distributing the Hm(x)e−x
2

we must calculate its double derivative which can be shown
to equal:

∂2

∂x2

[
Hm(x)e−x

2
]

=
{

4(m− 1)mHm−2(x)− 4mxHm−1(x) +
(
x2 − 1

)
Hm(x)

}
e−x

2

= γ.
(3.22)

Now plugging back into Equation 3.20 yields

Dnm = K(n,m)

∫ ∞
−∞

Hn(x)
(
−γ + V (x)Hm(x)e−x

2
)
dx

= K(n,m) [I1 + I2 + I3 + I4 + IV]

(3.23)

where

Final Report - CSM#2: Quantum Physics 9

I1 = −4m(m− 1)

∫ ∞
−∞

Hn(x)Hm−2(x)e−x
2

dx

I2 = 4m

∫ ∞
−∞

xHn(x)Hm−1(x)e−x
2

dx

I3 = −
∫ ∞
−∞

x2Hn(x)Hm(x)e−x
2

dx

I4 =

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx

IV =

∫ ∞
−∞

Hn(x)V (x)Hm(x)e−x
2

dx.

(3.24)

In order to find closed form solutions to the above integrals, we must consider integrals of
the form ∫ ∞

∞
xrHn(x)Hm(x)e−x

2

dx, (3.25)

which can be solved analytically using special properties of Hermite Polynomials [2](Solutions
to r = 0, 1, 2, 3, 4 can be found in the appendix). When considering the integral IV , we
would like to exploit the closed form solution of Equation 3.25 in order to avoid numerical
integration. This is possible if V (x) can be written as a power series

N∑
n=0

cnx
n, (3.26)

however, if this is not possible, we must evaluate IV numerically using MATLAB’s trape-
zoidal rule, which will give us approximate values for the D matrix.

Once the D matrix is calculated we then calculate its eigenvectors, in accordance with
the Lagrange multipliers, to find the critical points. This is done using built in MATLAB
function that return the desired vectors. Once calculated, we can then use the corresponding
coefficients in the eigenbasis expansion to create the respective wave function ψ(x). With a
set of ψ(x)’s, we will determine which has the tightest bound on the ground state energy by
plugging in the respective ψ(x) back into 〈H〉.

3.3 Software Design

The software package can be broken into two software suites, a computational suite and a GUI
suite. The computational suite is a standalone suite of functions that can be used without the
GUI which allows for quick results, and it also makes testing new computational functions
easier to do. The GUI component of the software is mostly a means for interactively viewing
the computational results such as viewing and comparing the probability density functions
for all the expectation energies, the associated expectation energies, and the coefficients of

Final Report - CSM#2: Quantum Physics 10

each computed ψ(x). The GUI suite also contains a suite of functions that interface with
the computation suite in order to retrieve and store the computational results for the GUI.

3.3.1 Computational Software Design

The computational component of the software was designed using a modular decomposition
approach. This design approach was chosen for several reasons. The first is that separate
functions can be written that parallel the major steps in the theoretical approach; therefore,
this design approach follows neatly with the theoretical approach. The second is that this
design approach makes the code easy to read, understand, and maintain. The third is that
this approach makes adding optional eigenfunction bases expansions of the wave function
ψ(x) easy to implement. The final reason is that this design approach can be easily inte-
grated with a GUI.

The diagram in Figure 1 shows the MATLAB functions created or used for the compu-
tational suite. If a function calls another function, then the caller function points to the
callee function. The beige colored functions were written by us. The light blue colored func-
tions were included in MATLAB, and the gray colored function was written by David Terr [3].

The pseudo code for each of the computational functions that follows well with the the-
oretical approach is below.

Pseudo Code for Computational operations
Call gseComputationalFunction()

for m = 1 : N
for n = 1 : N

Create ψ(x) using eigenfunction basis expansion
Create Dnm matrix by numerically integrating Equation (1.7)

end for loop
end for loop

Solve for eigenvectors using Lagrangian multiplier (Equation 1.12)

for i = 1 :(number of eigenvectors)
Solve for expectation value (Equation 1.6) using the ith eigenvector coefficients

end for loop

Find eigenvector coefficient set that is associated with minimum expectation value
Display the wave function expansion of ψ(x) using the minimum eigenvector coefficients
Return |ψ(x)|2 for each expectation energy
OPTION: Plot the probability density function |ψ(x)|2 associated with the minimum

Final Report - CSM#2: Quantum Physics 11

expectation energy

end gseComputationalFunction()

3.3.2 GUI Software Design

The design approach for the GUI is a hybrid between an object oriented and modular decom-
position approach. The choice to use a hybrid design approach was based on necessity due
to the nature of MATLAB’s GUI design for components/objects such as popdown menus,
axes, text fields, etc These objects are somewhat object-oriented, yet they are also
somewhat ”black boxed.” Therefore, helper functions were created to assist with changing
the attributes of some of these GUI objects and for maintaining the computational data that
is shared between these GUI objects.

The diagram in Figure 2 shows the MATLAB functions created and used for the GUI
suite. If a function calls another function, then the caller function points to the callee func-
tion. The beige colored functions were written by us. The light green (or mint-green) colored
functions were provided by MATLAB via the guide function; however, the bodies of these
functions were written by us. The light green functions are callback functions which are
called when a GUI object action is initiated by a user such as selecting an option from the
Truncation Value popdown menu.

The Get Computational Data suite of functions (see Figure 2) were created as an interface
between the GUI and the computational suite of functions. These interface functions are
called by the GUI, and they in turn call the computational functions and pass the resulting
computational data to the GUI.

The GUI was also designed to allow the user to pass a truncation value as argument
when launching the GUI (ψ(x) is computed for every order less than the truncation value).
A default truncation value of 10 is used otherwise.

The layout for the GUI is shown in Figure 3. The layout of the GUI was created to
be simple and easy to use, yet it still needed to display all the necessary data. Therefore,
only basic GUI objects/components were used such as popdown menus, text fields and axes
(plots).

4 Implementation

The computational suite was written in MATLAB per the client’s request. The GUI suite was
written in MATLAB because it made it easier to interface the GUI with the computational
suite. Whenever possible, existing MATLAB functions were used instead of witting new
ones.

Final Report - CSM#2: Quantum Physics 12

4.1 Computational Implementation

When populating the D matrix (Equation 3.14), we must carry out the integrals I1, I2, I3, I4,
and IV . To do this, we created several closed form functions that allowed us to avoid
numerical integration, namely

closedFormIx0(n,m) =

∫ ∞
∞

Hn(x)Hm(x)e−x
2

dx

closedFormIx1(n,m) =

∫ ∞
∞

xHn(x)Hm(x)e−x
2

dx

closedFormIx2(n,m) =

∫ ∞
∞

x2Hn(x)Hm(x)e−x
2

dx

closedFormIx3(n,m) =

∫ ∞
∞

x3Hn(x)Hm(x)e−x
2

dx

closedFormIx4(n,m) =

∫ ∞
∞

x4Hn(x)Hm(x)e−x
2

dx.

(4.1)

The closed form solutions to the following equations all contain the Kronecker delta func-
tion. In order to carry out these computations, we had to created our own Kronecker Delta
function, Kronic(n,m), because MATLAB has no such function.

Using the closed form solution allows us to calculate I1, I2, I3, and I4 exactly which
reduces Equation 3.24 to

I1 = −4m(m− 1)closedFormIx0(n,m-2)

I2 = 4mclosedFormIx1(n,m-1)

I3 = −closedFormIx2(n,m)
I4 = closedFormIx0(n,m).

(4.2)

Ideally, we would like to also reduce the potential V (x) to a sum of closed form solutions
in order to obtain exact results for the D matrix. For example, if we have a double well
potential V (x) = α(x4 − 2β2x2 + β4), we can avoid numerical integration by witting IV as

IV = α [closedFormIx4(n,m) + 2βclosedFormIx2(n,m) + βclosedFormIx0(n,m)] (4.3)

which is the exact solution. If there is no power series representation of V (x), we choose
to use MATLAB’s built in trapezoidal rule, as it is relatively accurate and performs as fast
as if we were to build our own numerical integration function. Also when calculating the
D matrix, we pulled out all the constants that did not depend on x and labeled them as
K(n,m), as found in Equation 3.21. This is the normalizing function and it is multiplied
against I1, I2, I3, I4, and IV in order to have a probability density function that sums to 1.

When finding the coefficients for the eigenbasis expansion, we must calculate the eigen-
vectors of D. To do this, we choose to use MATLAB’s eig() which automatically exploits

Final Report - CSM#2: Quantum Physics 13

any symmetry and diagonalization of the matrix. These exploits can result in more accurate
solutions and faster convergence.

With the newly calculated eigenvectors, we can then insert the coefficients into the eigen-
basis expansion

ψ(x) =
∞∑
n=0

an
1√

n!2n
√
π
e−x

2/2Hn(x). (4.4)

In order do this calculation, a function H(n, x) was created that included everything except
for the exponential since it is invariant for any wave function, ψn(x)

H(n, x) = an
1√

n!2n
√
π
Hn(x). (4.5)

For calculating the Hermite Polynomial Hn(x), we used code that was written by David Terr
[3], which returns the coefficients of the nth order Hermite polynomial.

4.2 GUI Implementation

To implement the GUI layout and add GUI components/objects (i.e. popdown menus, fields,
and axes), we used the MATLAB guide function. This function allowed us to visually con-
struct and layout the GUI, and it created necessary MATLAB .fig and .m GUI files. The
.fig file is the GUI object, and the .m file contains functions including the callback functions
that interact with the GUI.

The main body of each callback function was written by us. For more information about
these functions please see the Programmer’s Guide.

The data collected from the computational suite of functions is stored and shared be-
tween the GUI objects using the guidata data structure that is included in MATLAB. This
data structure was used because it was easy to implement.

Per the clients request, the ability to calculate the ground-state energies for several dif-
ferent potentials was built into the GUI. These potentials include a single well (harmonic
potential), a double well, a couple lopsided double wells, and a sech(x) function. A second
single well potential, which is solved using numerical integration, was also added to the GUI,
so that the numerical integrated results can be compared with the closed form integrated
results.

5 Results

For most of the built in potentials, we found closed forms of the integrals that were associ-
ated with their corresponding Hamiltonian operators. The results in these cases were very

Final Report - CSM#2: Quantum Physics 14

good. However, if a user wanted to quickly test and arbitrary potential, or if closed from
integrals for a particular Hamiltonian cannot be found, then some numerical integration is
needed. When testing these cases, which we did with the single well and sech(x) potentials,
the results were mixed.

We found closed form integrals for the single well, the double well, and the double lopsided
wells. Figure 4 shows the results for a single well potential when ψ(x) has been approximated
to the 29th order and a closed form of the Hamiltonian is used. The probability density func-
tions associated with the minimum and the excited energies look like the analytical solutions.
Figure 6 shows the results for a double well potential when ψ(x) has been approximated to
the 29th order and a closed form of the Hamiltonian is used. The the probability density
functions associated with the minimum and the excited energies in this case were what the
client had expected. The same was true for the lopsided double well case shown in Figure 7
(this well is just barely asymmetric). However, the probability density functions associated
with a more lopsided double well were unexpected (see Figure 8 and compare the min energy
probability density function from this figure with that in Figure 7).

For the sech(x) potential, we did not find the closed from integrals for the corresponding
Hamiltonian, so we had to use some numerical integration when calculating the D matrix
(Equation 3.14). Figure 9 shows the results when ψ(x) was expanded to the 25th order. The
results in this case were what the client had expected; however, the probability distribution
function ”washes-out” at higher orders which can be seen by examining figures 10 and 11 for
which ψ(x) has been expanded to the 42nd and 43rd orders, respectfully. When numerical
integration is needed in the Hamiltonian operator, there are also problems associated with
the probability density functions of the excited energies (the client is not sure if the excited
states have any real physical meaning, nevertheless the numerical and closed form results
of these states can still be compared). This behavior can be seen by comparing Figure 4
with Figure 5. Figure 4 shows the results for the single well potential when ψ(x) has been
approximated to the 29th order and only closed from integrals have been used in the cor-
responding Hamiltonian operator. Figure 5 shows the results for the single well potential
when ψ(x) has been approximated to the 29th order and numerical integrals have been used
in the Hamiltonian operator.

The results in the latter case were unexpected. When using numerical integrations for the
single well potential case, the results at lower expansion orders of ψ(x) are good; however,
at higher orders the results become increasing bad or unexpected. Unfortunately, for some
potential well cases, higher order expansions are required to accurately approximate ψ(x).
Therefore, when numerical integration is needed, the error at higher orders may be significant.

We believe the cause of the expected numerical integration behavior is inherit to the
numerical integration method that trapz uses. Higher order expansions of ψ(x) will likely
have many mall peaks and troughs near their edges, which will induce more error when
numerically integrating using trapz. Due to time constraints, other numerical integration
methods such as ”Simpson’s Rule” were not investigated.

Final Report - CSM#2: Quantum Physics 15

6 Conclusion

Although the results from the linear cases that used Hermite polynomials as an eigenfunction
basis were mostly good, we were, initially, mostly interested in the nonlinear Hamiltonian
which best describes the Bose-Einstein condensate; furthermore, we were also interested in
approximating the bounding wave equations by using several eigenfunction bases. Unfor-
tunately, however, the nonlinear part of Schrödinger’s equation made it impossible to use
the same theory for the nonlinear case that was being used for the linear case, and due to
time constraints, we were only able to implement Hermite polynomials as an approximating
eigenfunction basis.

Throughout the progression of the project, we made several attempts to implement a
theory that could include the nonlinear case. The first attempt involved an iterative scheme
that calculated the coefficients of the eigenbasis expansion one at a time. This approach
failed due to there being cubic solutions for the minimized coefficients. This theory did not
give us a way to eliminate two of the solutions, which would have resulted in the unique
solution that was necessary. Once the iterative scheme failed, we made an attempt to use
perturbation theory in order to calculate approximate wave functions. This is a common
technique used when the wave function can not be calculated exactly. This theory also failed
as it requires a complete eigenbasis expansion for all energy levels of the linear case; however,
we only had the expansion for the ground state energy level, which made it impossible to
calculate further perturbation. Due to the absence of a bridge from the linear to the nonlinear
Hamiltonian, and due to time constraints, we were unable to implement code which bounded
the ground state energy of the nonlinear Hamiltonian.

7 Future Work

Time constraints and code debugging limited much of our software development time. As
such, there are several features and refinements for both the computational suite and the
GUI suite that we would have liked to have added, but we were unable to do. The following
is a list of features or refinements that we would like to see included or applied to the software
in future releases.

• Add computational functions that expand ψ(x) in other eigenfunction bases (i.e. Leg-
endre polynomials and sines and cosines).

• Add a method for finding the ground-state energy using the nonlinear Schrödinger
equation.

• Make it easier for the user to provide an arbitrary potential function via the GUI –
currently, new potential functions have to be manually coded into the GUI.

• Further investigate the numerical integration problem and if possible, provide a fix.

Final Report - CSM#2: Quantum Physics 16

• Refactor the computational suite of functions.

– Minimize the number of computational functions that the user must interface
with, possibly into just one function.

– Reduce the number of computations (e.g. multiplications and additions) that are
used to populate the D matrix.

– Some of the functions return data that were used in earlier releases of the software,
but they are not used in the current release; therefore, these data can be removed
from the software.

Final Report - CSM#2: Quantum Physics 17

References

[1] Dacid J. Griffiths, Introduction to Quantum Mechanics Pearson Prentice Hall, 2006.

[2] George B. Arfken, Hans-Jurgen Weber, Mathematical Methods for Physicists, 6th Edi-
tion Elsevier, 2005.

[3] David Terr, HermitePoly.m , MATLAB Central (2004), available at
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?

objectId=4911\&objectType=FILE.

18

Appendices

A Hermite Integral Equations

Consider the integral of the form

Ixr(n, n+ p) =

∫ ∞
∞

xrHn(x)Hn+p(x)e−x
2

dx (A.1)

where r, n,and p are positive integers. In order to compute this integral, we must use two
important identities associated with Hermite Polynomials. The first is the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1 (A.2)

which can be re-written as

Hn(x) =
1

2x
(Hn+1(x) + 2nHn−1) , (A.3)

and the second is the known orthogonal relationship [2]

Ix2(n, n+ p) =

2n
√
π(n+ 2)! for p = 2

2n−1
√
π(2n+ 1)! for p = 0

0 for p > 2, p = 1.

(A.4)

Now, lets examine the case when r = 3. By replacing Hn with the recurrence relation of
Equation A.3, we can rewrite Equation A.1 as

Ix3(n, n+ p) =

∫ ∞
∞

x3Hn(x)Hn+p(x)e−x
2

dx

=

∫ ∞
∞

x3 1

2x
[Hn+1(x) + 2nHn−1]Hn+pe

−x2

dx

=

∫ ∞
∞

x2

2
[Hn+1Hn+ p+ 2nHn− 1Hn+p] e

−x2

dx

=
1

2
[Ix2(n+ 1, n+ p) + 2nIx2(n− 1, n+ p)] ,

(A.5)

which can be simplified and rewritten in piecewise form as

Ix3(n, n+ p) =

2n
√
π(n+ 3)! for p = 3

2n−1
√
π3(n+ 1)(n+ 1)! for p = 1

0 for p > 3, p = 0, p = 2.

(A.6)

Similarly, for r = 4, we use the recurrence relation of Equation A.3 and simplify

19

Ix4(n, n+ p) =

∫ ∞
∞

x4Hn(x)Hn+p(x)e−x
2

dx

=

∫ ∞
∞

x4 1

2x
[Hn+1(x) + 2nHn−1]Hn+pe

−x2

dx

=

∫ ∞
∞

x3

2
[Hn+1Hn+ p+ 2nHn− 1Hn+p] e

−x2

dx

=
1

2
[Ix3(n+ 1, n+ p) + 2nIx3(n− 1, n+ p)] ,

(A.7)

which can also be simplified and rewritten in piecewise form as

Ix4(n, n+ p) =

2n
√
π(n+ 4)! for p = 4

2n
√
π [(3 + 2n)(n+ 2)!] for p = 2

2n−2
√
π [3(2n2 + 2n+ 1)n!] for p = 0

0 for p > 4, p = 1, p = 3.

(A.8)

In general, we can find the closed form solution of Ixr(n, n+ p) using the recurrence

Ixr(n, n+ p) =
1

2
[Ixr−1(n+ 1, n+ p) + 2nIxr−1(n− 1, n+ p)] . (A.9)

20

B Figures

Figure 1: Computational Suite Functional Diagram

21

Figure 2: GUI Suite Functional Diagram

22

Figure 3: GUI Interface Layout

Figure 4: Single Well Potential Case Using Closed Form Integrals Only

23

Figure 5: Single Well Potential Case Using Numeric Integrals

Figure 6: Double (Symmetric) Well Potential Case Using Closed Form Integrals Only

24

Figure 7: Double Lopsided Well Potential Case Using Closed Form Integrals Only

Figure 8: Double Lopsided (More Asymmetric) Well Potential Case Using Closed Form
Integrals Only

25

Figure 9: sech(x) Well Potential Case Using Numeric Integrals and ψ(x) expansion of order
25

Figure 10: sech(x) Well Potential Case Using Numeric Integrals and ψ(x) expansion of order
42

26

Figure 11: sech(x) Well Potential Case Using Numeric Integrals and ψ(x) expansion of order
43

