
1

Colorado School of Mines, Field Session 2007

Los Alamos 2 – Parallel Search
Olen Davis, Bailey Kelly, Kari Macklin

Submitted June 22nd, 2007

2

Executive Summary
Los Alamos National Laboratory is a governmental nuclear weapons development facility.
Additionally, the lab is a research facility for other scientific areas. They use large super
computers to store their data and research. As data sets have grown increasingly large, the cost of
searching the data has become progressively more expensive.

This project accomplishes three main ideas:
1) Develops a specific indexed search technique used for probing through a specific set

of metadata. This is accomplished through the use of Google Desktop and its
software development kit.

2) Creates its own dataset through the generation of custom tagged JPEGs. This done
by creating the images using a Java program and then giving them unique tags
through a C# program.

3) Creates a parallel computing environment to run searches on several computers at
once. This is fulfilled by the use of a message passing interface, specifically,
MPICH2.

The original goal of this project was to simulate large scale data searches by scanning multiple
computers for JPEG image files. To accomplish this task, the project would combine parallelism
using MPI with efficient search techniques using Google Desktop and compare these results with
those found using Windows' old file search. The efficiency of these data searches would be
numerically analyzed and represented graphically.

Unfortunately, the development took longer than expected, and that is why the project goals
shifted. The searching and analyzing part of the project has been allocated as additional work
after the completion of the Summer 2007 Field Session.

3

Introduction

Motivation and Client
Los Alamos National Laboratory is a governmental nuclear weapons development facility.
Additionally, the lab is a research facility for other scientific areas. They use large super
computers to store their data and research. As data sets have grown increasingly large, the cost of
searching the data has become progressively more expensive.

They are looking for better ways to quickly and effectively search their data. Furthermore, this is
why they have come to the Colorado School of Mines: to aide them in finding a solution to this
very practical and important problem.

Our Project
Our project simulates searching metadata in parallel on a small cluster of computers. The goal of
this project is to time-wise analyze search methods for efficiency. In turn, this will help LANL’s
efforts to minimize the cost of searching through their extensive amount of data.

In picking what method of searching we would use, LANL turned to software that was readily
available and that came with a long list of credentials to boot: Google Desktop. This software is
free and easily downloadable to anybody who has a computer and internet access. Many people
are already aware of Google’s web browsing dominance and high performance. Additionally,
Google Desktop takes this same web browsing idea and applies it to the hard drive on your
computer, quickly searching through all your files so you can find what you need much faster
than clicking through your computer’s browser. Google has raised the bar in searching
techniques by utilizing a unique indexing capability that organizes your files ahead of time so
they are quicker to search through. This is precisely why we are using Google Desktop.

We now have how we are going to search through large amounts of data, but now we need
something to search through. In effort to make the searches more controlled, the project asks
that we create our own dataset. JPEGs are a good example of metadata because they hold large
amounts of searchable information within their structure.

The project also required some kind of message passing interface to allow the computers to talk
to one another and perform the searches simultaneously. Once again, this came down to
something that was readily available to the public, and this was the MPI library, MPICH2.

With the three main project ideas in place, it created a natural organization for the project and
thus for this paper:

1) The JPEG Dataset
2) The Google Desktop Development

4

3) The MPICH2 Implementation of the Searches.

The Problem Statement

--To develop index search techniques for a generated JPEG dataset within a
parallel computing environment--

Dataset

Introduction
The Parallel Search project requires a complex dataset containing metadata to be searched. In
order to ensure the dataset would have metadata, the group and client decided to generate a
dataset of JPEGs. The Specifications for JPEG files are produced by the Joint Photographic
Experts Group and JPEGs are a common image format type [1]. A JPEG is a complex data type
that contains far more information that the basic pixel data of the image. Some of the information
stored in JPEGs includes important dates, color scheme information, and compression data.
JPEGs are also capable of storing other types of data, including EXIF tags. Exchangeable Image
File Format or EXIF tags can contain any kind of data but some of the most common tags are
author, camera maker and comments [2]. Once the dataset is created it also needs to be able to be
parsed out to obtain the information that has been added to it to be searched.

Requirements and Specifications
The requirements for the dataset were that it needed to have searchable metadata and since
JPEGs are among the most common file types with complex metadata, they are a good choice to
meet this requirement. Another requirement was that the dataset be large enough to provide an
ample search. Due to time constraints and limited disk space, the dataset is not the 100 GB it was
once thought it could be; instead it is 77 GB total. An external 250 GB USB hard drive was
found to store the entire dataset and the dataset was also spread evenly across the eight
computers.

In order to accomplish these requirements the Eclipse Java IDE was used as well as Visual
Studio 2005 C# Express Edition. Also used was approximately 9.5 GB of the remaining 12-14
GB of the 8 computers' C drives as well as the external USB hard drive. Data about the
distribution of the dataset can be found in Appendix A: Dataset Size per Computer.

Design
The dataset was generated using a combination of Java and C# programs. The Java program
created images of random sizes using BufferedImage objects of random sizes that contained
random Graphics2D shapes such as rectangles and ellipses with random colors, some with
gradient color. This BufferedImage was then used to create a RenderedImage which could be
written to a JPEG file [3]. In order to easily create files with different names, an incremented

5

value was used to assign a number to the title of the JPEG files. Since generating the basic
images with Java, the Picture Generator program has been updated to include a graphical user
interface which can be seen in Figure 1 below. The Picture Generator Setup Frame requests the
number of images to be generated, the number assigned to the first JPEG generated, a directory
location of for the images, the basic name for the images, height, width, and the extension for the
picture files (i.e. – jpg). The JPEGs generated in this program are smaller than the average JPEG
at only about 150-250 KB. This is because they were created from simple Graphics2D shapes
rather than more complex image data like that from a camera where most JPEGs come from. The
complete code for the Picture Generator can be found in the Appendix B: Picture Generator.

Figure 1: Picture Generator Setup Frame

After the images were generated, they were sent through various versions of the C# Tag Adder
program which would add tags to the JPEGs and save the modified versions in a new file [4].
Different versions were created so that the JPEGs would have a variety of tags with different
numbers of tags in different JPEG files. The code used for Tag Adder is contained in Appendix
C: Tag Adder Versions.

An advanced version the Tag Adder program called Parallel Search Tag Adder was created to
include a graphical user interface that would request the directory of the images and the
extension of the original images as well as the extension the final pictures should have (i.e. -
.jpg). Figure 2 shows how this program appears when run. The program adds all of the tags to
each image then saves the Bitmap image to a new image file and deletes the original file. This
program was developed at the end of dataset creation when it was decided that the dataset had
many basic Java generated images that should take a smaller portion of the total dataset. The
program was used to replace some of these basic JPEGs with more complex JPEGs that have 10
tags. Appendix D: Parallel Search Tag Adder contains the primary code for this program.

6

Figure 2: Tag Adder Setup Frame

As Figure 3 shows, ParallelSearchJPEGs is an application created in C# that parses JPEGs by
using the C# image library that was used to parse tags in the JPEGs [4]. The program only
handles the ASCII encoded tags, so the values of tags of other types such as the integer encoded
tags are not handled properly by this program. Though, the program will provide the ID of the
tags, the length, and the encoding type of the tag. This program was used to check that
information was being properly added to the JPEGs and that the values of the tags could be
obtained after being added to the JPEGs. The parsing code for this program is located in
Appendix E: Parsing Code.

7

Figure 3: JPEG Parsed by ParralSearchJPEGs Program

Implementation
Dataset Generation Process

1) Images were generated using the Picture Generator program. In total, nearly 80,000 of
these were created.

2) The JPEGs generated by using the Picture Generator program were sent through
various versions of the Tag Adder program to create new JPEGs that contain modified
EXIF data. Some pictures that had already been output from a Tag Adder program were
then used on as the original versions of new pictures. Though, the majority of the dataset
was created directly from the original group of almost 80,000 JPEGs.

3) The Parallel Search Tag Adder program was used to replace half of the original almost
80,000 JPEGs generated by the Picture Generator with new JPEGs that had their EXIF
data modified to contain eight more tags.

Tag Description
Each tag has certain characteristics. There is an identification number, for example 271 is the
identification number for the camera maker tag. When a JPEG parsing program searches for
EXIF data in a JPEG it will search for this identification number. The tags also contain
information about the length (usually in bytes) of the tag and the value of the tag [5]. The value
for a camera maker tag might be Canon. For this project about a dozen different tags were added
to the images, the only tags that were created that used an ID commonly associated with JPEGs

8

was the camera maker, Chrominance table and the Luminance table tags. The specific EXIF tag
details are contained in the Dataset Programmer’s Guide.

Chrominance table and Luminance tags were contained in all of the JPEGs since they were
added by the Picture Generator program when they were created. Several tags had constant
values throughout sets of pictures, but as requested by the client several other distribution types
were used in the tags. There were two types of uniform distributions inside the tags, one which
was supposed to choose with equal likelihood from one of the four values and another that would
set the value based on random bytes that were not weighted in any way. Two types of weighted
distributions selected from four values with differing probabilities of a value being selected. A
highly discrete normal distribution was created where six different possible values were
supposed to be chosen to create a semi-bell curve based on the percentages of 2.3%, 13.6%, and
34.1% [6]. A final distribution type was created out of integers produced by the Box-Muller
Algorithm which creates normal distributions [7]. However, the algorithm generates pairs of
values and only one of these pairs was added to the tag, making the distribution less Gaussian.
Also, a logic error in the percentage based discrete distributions (weighted, normal, and uniform)
skewed the percentages of the values in the dataset. This error has been resolved in the most
recent versions of the Tag Adder programs.

Dataset Organization
The purpose of the dataset is to be a controlled test which verifies the Google Indexer’s ability to
properly index the given data. In order to do this, the dataset should have variation within it as
well as some way to verify that the results are correct. For this project, a dataset of JPEGs was
generated that consists of nine primary groups of data.

The first part of the dataset generated was the Blankjavaimages grouping. This is the most basic
set of JPEGs and besides bulking up the dataset, these images ensure that the Google Desktop
plug-in correctly handles images that lack the tags that it is indexing. The Blankjavaimages
contain basic JPEG formatting, such as color type, the frame, time stamps, as well as two EXIF
tags the Chrominance table and Luminance table. These JPEGs were generated using only the
Picture Generator program and never had tags added to them from the Tag Adder program. If
any search of the ASCII encoded tags returns one from this group, then we know an error has
occurred in the search.

The second section of the dataset was initially called Taggedjavaimages, but these later became
the CSMLANLPS images. The Taggedjavaimages were created the same way as
Blankjavaimages and were basic JPEGs with the two basic tags. Along with Blankjavaimages,
Taggedjavaimages were sent through as the various C# Add Tag programs to create the other
groups by adding EXIF tags to the images and saving the images in new files with different
names.
CSMLANLPS was the last group created and replaced the Taggedjavaimages group. The
CSMLANLPS was created using the Parallel Search Tag Adder by adding EXIF tags to the
Taggedjavaimages. The Taggedjavaimages group as then deleted by the program after it made
the CSMLANLPS JPEGs. CSMLANLPS is the most complex set of JPEGs with ten EXIF tags
in total. Each tag is encoded as ASCII characters, and the tags have various distributions such as
weighted, uniform and normal distributions.

9

The Taggedjavaimage group is the third group of the final dataset. It was the first group of
images to be tagged and contains the most basic tag with an ID of 66535. The tag in this group
would have a single value throughout groups of JPEGs that were created together. The
Taggedjavaimages group was used as the original files that were modified to produce the
Taggedjavaimage files.
Also created early in the dataset generation process, group Twicetagged is a unique group that
had two of three tags added to them. The 66535 tags were added to all of the JPEGs, and then
either 65534 or 65533 were added to the image. The values of these tags wasn’t varied within a
set of images, instead the Tag Adder add one of these two tags based on an even probability.
This was the only group where the tags that were added were randomized, not the value of the
tags. The program chose with an even chance between two different tags to add to the image.
The Camerataggedimage group verifies that the images are being tagged correctly so that other
programs can open the JPEGs and read them correctly. Windows is capable of viewing several
EXIF tags inside of JPEGs, one of which is the camera maker that the Camerataggedimage group
contains.

Figure 4: Example Camerataggedimage

10

Figure 5: Windows Display of JPEG information

The above Figure 4 shows an example JPEG from the Camerataggedimage group. Figure 5
shows part of the information about the JPEG, specifically the camera maker tag which was
encoded by one of the C# Tag Adder programs. This window can be displayed by right clicking
on a JPEG, selecting properties and then the summary or detail tab. The camera maker can also
be labeled as Equipment make.
The Uniformcamera group is similar to the Camerataggedimage group except that the images
were assigned values in a uniform distribution. The values are chosen from one of four
possibilities with a 25% chance of any value being assigned to the JPEG. Also contained in these
tags were two tags which had the same value across the set.
Normal0xfff9 JPEGs were assigned values in a very basic normal distribution which chooses
from six possible values that form a discrete version of the bell curve for the 0xfff9 tag. Tags
0xfff1 and 0xff55 were constant valued tags that were added to the JPEG set.
Uniformrandom0xfff8 group assigns the tag values based on random byte values. This is a
uniform distribution, and any searches of this group would likely return only one result due to
the number of possible combinations of byte values. Two constant valued tags were also added
to this group.
The Normaltest0xfff7 group was an attempt to create a more realistic Normal distribution using
the Box-Muller transformation of uniform random numbers into a normal distribution. The
values ranged from approximately -200 to 200 with a center at 0. Other tags in the group is the
camera make tag which is assigned random byte values, another constant valued tag, and a
weighted tag where values a 10%, 15%, 25% and 50% chance of being assigned.

11

For specific information regarding the particular tags added to the JPEGs and distributions of
these tags please see Appendix F: Tags by Group.

Scope and Project Progression
The dataset part of the project meets the minimum requirements for the project. It is a large
dataset that contains metadata. Since it was created during the development stage there are
several remnants of earlier JPEGs that lack the complexity of later JPEGs. The dataset should
include some JPEGs that are at least similar to these earlier JPEGs as proof that the Google
Desktop is capable of handling any JPEG. However, the dataset is lacking in a unifying trait that
marks the JPEGs as part of the dataset. Such a trait was not part of the scope of the project but
could be considered if the project were continued.

Final Dataset Specifications

The final dataset is 77 GB in size and has 364,000 JPEGs. The JPEGs have a basic JPEG data
and from two to ten EXIF tags. For a complete listing the dataset specifications please see
Appendix G: Dataset. The dataset has been spread across the eight lab computers supplied for the
project and another copy is located on the external USB drive.

Conclusion and Future Directions
Creating this dataset has shown that generating the image part of the JPEG is the most time
consuming process, while adding the tags to an existing JPEG takes less time. The dataset was
being created while methods for generating JPEGs and adding tags were being tested causing
most of the groups to be somewhat experimental. Some were successful groups such as the
Camerataggedimage group, while others had characteristics that weren’t used again while
creating this dataset like the Twicetaggedimage group.
Future goals would be to create a single program which would be able to generate images and
add various tags to that image which could then be saved as a JPEG. Possible input for the
program could be such information as tag id, encoding type, possible tag values and type of
distributions. This may be possible by investigating C# image classes to generate the image part
of the JPEG or perhaps the lockbit functionality of C# which deals with rectangular sections of
C# Bitmaps [8]. A few test JPGs were created in C#, but the process was slow because a pixel by
pixel generation process was used [9]. These images also proved difficult to add a tag to which is
an error that remains unresolved. C# appears to have a great potential in producing JPEGs of
lareger size as it was used to generate a JPEG that was 211 MB in size. Unfortunately, producing
this JPEG took almost 40 minutes. The pixel by pixel C# JPEG generation code is located in the
Appendix H: C# JPEG Generator.
A Java program utilizing the IIOMetadata class may also be able to add the tags to the Java
generated images [10]. Java has some online examples for parsing JPEGs and tends to produce
trees out of the metadata with each node being a tag. The parsing and accessing of tags within
the Java language is a reasonable process, however little development has been done to set or
append new tags into the JPEG.
Whichever language chosen, the final program should have some sort of randomness to it that
will add different numbers of tags. This could be implemented similarly to the way in which the

12

Graphics2D objects were added to the BufferedImage, or perhaps some forms of weighting could
be used which would add some tags more than others, preferably using tags that did not ID
values of 0xFFxx since these tend to be reserved for other important JPEG tags [5]. Another
future goal would be to generate JPEGs with a larger variety of sizes, perhaps with different
compressions. Also, the organization of the images could be investigated by altering the
directory structure in which the JPEGs are organized. In the future, the tags could possibly be
encoded with other types besides ASCII byte arrays and the ASCII byte arrays could be
formatted correctly to be terminated with a null value so that all programs correctly read the
values in the tags. Two final ideas would be that instead of using the .jpg extension, the files
would be saved with a special extension created for the project, for example .ps and that a special
tag could be added to all of the pictures with a consistent value throughout the dataset to mark
the JPEGs as part of the dataset.

13

Google Desktop Plugin Development

Introduction

Ultimately, this project has been divided into three implementation portions. The first is
generating JPEGs, whether they be created or found. The second is implementing means for
indexing and querying these JPEGs with Google Desktop. The third is executing and timing
given queries in parallel across the eight computers. This portion of the report describes the
motivation for and accomplishments made implementing that second portion of the project: the
Google Desktop plugins. To that end, let us begin by describing the Google Desktop system and
our interaction with it.

Google Desktop

Please note that throughout the rest of this section, ‘Google Desktop’ will be referred to as
‘GD’. In this section, we will describe the four components of the Google Desktop system. The
first piece of GD is the central one, the one that might be called the GD core. It contains the
search index. The second part is the GD crawler, which finds new files to index. The third is
the collection of indexing components GD uses to process a file found by the crawler into a set
of indices. The final part isn’t really a part of GD per sé, but is necessary for querying GD: a
querying plugin. For now, let’s make sure the relationship between the crawler, the core, and
indexing plugins is clear.

The Indexing Triangle
Indexing is the process GD uses make files and even more abstract data entities on any machine
searchable. The starting point of this process is the crawler. The GD crawler is a background
process of Google’s that roams the host computer’s hard drive for new or newly modified files.
At this point, the crawler simply gives the GD core that file’s path along with information about
what kind of file it is.

At this point, the ball is in the GD core’s court. The core has a number of indexing plugins, each
registered to index a certain kind of file. So, when the core gets a notification from its crawler
about a certain file, the core considers the file’s type and gives the file’s path to the indexing
plugin that is registered for the file’s type.

At this point, it is the indexer’s job to “index” the file. Indexing though is not quite a direct
process. Rather than calling some number of “indexing” methods on some core GD object, the
indexer is given the means to create and send “events” to the GD core. An “event” is really a
discretizaiton of the descriptive information for a file. When GD receives these “events” from its
indexers, GD processes them internally into new search indices.

At this point, it ought to be made clear that the indexing process for GD is really a triangle. The
crawler finds a file that might give rise to new indices, so it communicates with the GD core.

14

What it communicates to GD’s core is the file’s path and file’s type. Then, the GD core picks a
number of indexers to index the file based on the file’s type and the indexers’ registered types,
and sends the indexer the file’s path and a means of creating events. The indexer then builds an
event (although it can create more than one) from the descriptive information in the file, which it
sends back to the core to become a new set of indices.

Registering COM Objects

It is easy to understand why GD indexing plugins are registered with GD. If not by registration,
how else would GD know what kind of files an indexing plugin indexes? However, any code
that queries GD also has to be registered. The reason here may be slightly more obscure, but the
reason probably lies in a lack of understanding about what implementation form plugins take –
whether they be indexing plugins or querying ones. Plugins to GD are not executables though
they are binary. They are COM objects.

What are COM Objects?
COM objects are really pre-compiled classes. The same way a class has a public interface and
hidden implementation, COM objects have visible interfaces and inaccessible implementations.
In fact, the same way classes can be collected in libraries, COM objects can be collected in DLLs
(dynamic linked libraries). But rather than a referenced class needing to be compiled with each
compilation of the referencing project, a COM object already exists as binary somewhere within
the Windows system and gets referenced and instantiated at runtime.

There are two aspects of COM objects that are entirely distinct from anything in compile-time
encapsulations like classes. The first is globally unique identifiers – GUIDs. When referencing
a class, the code knows where the class’ code is because of compiled references to those pieces
of code. For binary COM objects though, there needs to be another way of finding them;
Microsoft’s answer is this: assign every COM object a globally unique identifier, which will be
used like the ISBN of a book to define a COM object’s uniqueness as well as how the Windows
runtime finds it. Therefore, if another already-compiled collection of classes/COM objects –
such as Google’s GD API – needs to call methods on another COM object, all it needs is that
other COM object’s GUID.

The second aspect of COM objects that irrevocably separates it from classes is the idea of
registering a COM object with Windows. In order for Windows to ever find a COM object
referenced in other code, Windows has to know the object’s GUID. The details of this are
entrenched in Windows OS programming methods, but remember the bookstore metaphor. In
order for a bookstore to sell a book, it needs to be able to find it; and for that, it needs the books
ISBN. To register a COM object, one needs to run RegAsm.exe on its containing DLL.
However, there is a second step akin to placing the book on the correct shelf, keeping with the
bookstore metaphor. This step is placing the DLL in the Global Assembly Cache with the
GACUtil.exe.

This is thus the minimum prerequisite knowledge to work with the GD API. This is because the
GD API is entirely COM-based. All of its components are COM objects, and all of its plugins

15

are COM objects. For this reason, from this point on in the report, ‘COM object’ and ‘plugin’
will be synonymous; when the entity’s properties as a COM object are more relevant, ‘COM
object’ will be used, and vice-versa.

The Google Desktop API

Ultimately, the GD API is used very differently for the indexer than for the querying plugin. In
the beginning though, the process is nearly identical: the plugin must be registered for its duty
with GD.

Registering a Plugin with GD
The GD API is easy to understand once things have been set in motion, but there are some
perhaps unexpected features and requirements of the API, not the least of which is this first idea:
registering the plugin. In fact, the need for this step is not entirely a technical one. In one step,
the GD API’s registration mechanism provides the plugin’s GUID to GD, and ensures that the
user intended to install the given plugin. The reason why this is not necessary in a purely
technical sense is, querying GD through the API does not require GD to have knowledge of the
querying plugin’s GUID. Nevertheless, when any plugin is registered with GD, a window pops
up displaying the plugin’s description, which was passed to the registration method, to ask the
user to verify that they wanted the given plugin to have access to their computer via GD.

In detail, there are essentially two registration steps. The first is the same for all plugins: The
plugin’s GUID and description are provided to start registration. The second however is
different for each kind of plugin. If the plugin is to be an indexer to GD, an
IGoogleDesktopRegisterIndexingPlugin object is gotten from the GoogleDesktopRegistrarClass
and used to register the plugin to handle files of a given extension. For querying plugins though,
an IGoogleDesktopRegisterQueryPlugin is gotten from the same registrar class and used to get a
“cookie” 32-bit integer, which has to be included in all GD API querying methods for the query
to be successfully executed.

Implementing an Indexing Plugin
First, remember that COM objects are classes that are compiled. To implement an indexing
plugin – which is a COM object, which is thus a class – the class that is the plugin must
implement the DgoogleDesktopFileNotify interface. Implementing this interface means
implementing its only method: the HandleFile method. So long as the class implements this
method, and the compiled COM object is successfully registered as an indexer, you have an
indexer. Because the at this point the method is empty, your indexer performs no indexing, but it
will be invoked each time its registered file type is encountered by the crawler.

Implementing the HandleFile method really means two things, corresponding to using
each of its two parameters. The first parameter is the full path to the file to be indexed. Using
this parameter looks like opening the file and extracting from it descriptive, useful information.
The second parameter is an “event factory.” An event factory creates instances of the Event
objects the indexer uses to communicate to GD the relevant information in the given file.
Therefore, using the event factory means creating the appropriate event (there are 12 kinds

16

ranging from generic “Indexable” events to “IM” events, representing individual instant
messages), and populating it with the relevant information you extracted with the file’s path.

Implementing a Querying Plugin
Implementing a querying plugin centers around how you handle that “cookie” integer returned to
the plugin class during its registration. The reason for this is that all of the querying methods of
the GD API require the plugin’s registration cookie. This is a real problem because unless
registration occurs before (and unregistration after) every bit of code in the COM object that
needs to query GD, the cookie cannot possibly be stored in any of the classes members – static or
otherwise. The reason this data disappears is because the COM object is created anew from the
given binary every time other code references it.

A simplistic persistence solution would be to put the cookie in a read-only file somewhere on the
hard drive. A standards-compliant solution on the other hand would put the cookie in a read-
only XML file somewhere on the hard drive. Our solution in fact places the cookie in a certain
registry key-value pair in the Windows registry. (The registry is an entire topic unto its own;
suffice it to say the registry is used highly in legacy-style Windows development to store small
bits of data that need to persist COM object lifetimes.) With the cookie then persisting, we can
simply instantiate a GoogleDesktopQueryAPIClass, and call any of its Query methods with the
saved cookie.

Referencing the GD API
An extremely important – and surprisingly non-trivial – aspect of using the GD API is
referencing it in a .Net C# project. However, this topic is highly pragmatic and only distracts
from the big picture. Suffice it to say, the API can be referenced in any .Net project. For more
information than this though, please refer to Appendix I for a full, step-by-step exposition as to
how.

Referencing the Querying Plugin in a C++ Program
The process for this is very similar to that of referencing the GD API in .Net. However, its
process is also just as convoluted and distracting. In fact, referencing the querying plugin isn’t
even directly related to the GD API because it is simply the process of referencing in C++ a
COM object – a COM object that happens to have GD-related code in its binary. Again, it can
be done, but please refer to Appendix K for the explicit how-to.

Developing the Plugins

We developed two plugins: a custom indexer for .JPG files, and a querying plugin that wrapped
GD’s querying methods in a number of useful methods. We ran into various interesting – albeit
frustrating – problems in getting things working. Ultimately, we succeeded in fully
implementing the minimum functionality, but more work should be done to create full-featured
indexing and querying.

Developing the Indexer

17

The indexer’s role is to make all of our dataset’s JPEGs searchable with their file names and all
of their meta-data. As such, it must do two things: extract the meta-data from a JPEG given its
path, and create and fill an appropriate event with the JPEG’s meta-data in such a way that the
JPEG will be found with a query incorporating any of its meta-data.

Actually, both of these processes are simple. To extract a JPEG’s data, the file must be opened
into an Image object (in .Net’s System.Drawing namespace), which has a property,
PropertyItems, which is a collection of all meta-data in bytes. Looping through and encoding
each of these byte arrays into ASCII strings finds all of the JPEG’s meta-data in text form. The
next step is putting this text in the right place in an event object.

There were three event objects we might have used for the JPEGs appropriately: Indexable, File,
or MediaFile events. The File event inherits the properties of Indexable, and the MediaFile
inherits the properties of both File and Indexable. Among the these, there were really two
properties where the meta-data could be placed to create the desired indices: Content (from
Indexable), and Keywords (from MediaFile).

Struggling with Tracing
In fact, there were many issues actually implementing the indexer. Most importantly, we
couldn’t be absolutely sure whether files were being found by the crawler and thus successfully
indexed. We took two approaches to working through these questions: the first was tracing the
indexing, and the second was searching on each piece of the given meta-data of JPEGs whose
indexing was traced.

Tracing alone was harder and more questionable than all the other debugging tasks in developing
the indexer (including [un]registration of the indexer as well as creating appropriately indexed
events). Our first attempt and most reliable method was displaying pop-up windows with
necessary trace information at appropriate steps in the indexer’s HandleFile method. However,
these dialogs required us to click OK before indexer execution could continue. For some reason,
this interruption always caused the GD crawler to move on and not get back to another JPEG for
about 5 minutes. Therefore, we opted for a much more tricky tracing approach: appending
relevant information to a trace file.

As a COM object, the indexer can be invoked concurrently. What this really means is we would
see a trace file created, but then there would be no data in it, and it would be “in use by another
program” until GD was manually shut down. Our solution to this was a simple locking
mechanism based on the IsReadOnly property of the file: busy looping until the file becomes
writable, when we open the file for writing, thus locking it from all other instances of the
indexer. However, this isn’t a strict mutual exclusion method, and we continued to have cryptic
moments when the file would be locked up in an instance of the indexer.

Struggling with Indexing
We were surprised in filling the appropriate event with meta-data to have no problems extracting
the files’ meta-data, but to instead have issues finding the appropriate event. A MediaFile is of
course the appropriate event. However, there were always debugging problems when using a

18

MediaFile, and I could never figure out if it was the tracing failing or the MediaFile’s Keywords
property with the meta-data not being indexed sufficiently by GD. Nevertheless, tracing and
querying was successful when indexing the JPEG as a File event with the meta-data parsed out
and placed in the event’s Content property.

Developing the Searcher
The querying plugin’s role is to wrap GD’s querying functionality. Beyond registering the
plugin with GD, implementing the plugin consisted of deciding on a useful interface and
implementing that interface. Designing the interface took a simple consideration of what the GD
API required, versus what parameters we would actually change and what format we would want
about the results we might need to use.

As for what the API requires, GD’s querying methods are passed three things: the plugins
registration cookie, the query string, and a category object representing what kind of events to
search for, and a ranking object representing whether to order the results by relevance or
newness. However, we would many times only want to specify a query string against all events,
ordered by relevance.

As for the rest of our needs, we do not always want all of the results, or all of the information
about the results. For instance, we want a method that returns only the count of all query results.
We also want a method to return the execution time of the query. And while most of the time,
we will only be specifying different query strings, searching against all events, ordering results
by relevance. However, there will likely be situations wherein we would need to specify what
categories to query and how to order our results, in addition to specifying the query string itself.
Therefore, we arrived at six methods with two parameter sets against three return values. The
two parameter sets were one specifying the query string, category, and ranking, and the other
specifying only the query string. The three kinds of return values were a string representation of
all results, the number of results, and the time it would take to execute the query in milliseconds.

Struggling with Return Values
Literally our only issue with implementing the querying plugin was how to pass the GD result set
object directly to the caller. We would have liked to be able to deal directly with the
IGoogleDesktopQueryResultSet object, rather than counting its results or concatenating its
results into a string. However, for unresolved reasons, when we referenced the querying plugin
in C++ when it had any GD API members in any return values of the public interface (and
therefore likely, any parameters as well), we would have compilation errors due to the GD API
members being unresolved identifiers. In the end, we just implemented each of the pieces of
functionality we have gotten out of the result set object.

Google Desktop Plugin Development Summary

In the end, we did arrive at useful, functional plugins for indexing and querying. The indexer
technically indexes the JPEGs as File events; however, their meta-data is searchable nonetheless.
The querying plugin doesn’t return actual IGoogleDesktopQueryResultSet objects, but it does
return all the information we would want to get out of it at this point in development. By the

19

way, supplementing our querying plugin is as simple as adding a public method and recompiling.

As for future work, there are things that can be done to both the indexer and searcher that would
aid us highly. For the indexer, it would be preferable to index the JPEGs as MediaFiles, not
Files, because of the additional indices such as Width and Height this would entail. Also, it
would be preferable to successfully add a thumbnail to the indexer’s event as again, this would
mean a substantially larger index. About the searcher, it would be preferable to directly wrap all
of the GD API’s querying methods, and allow referencing code to create its own wrappers for
this fully presented functionality.

20

MPICH2

Introduction
In order for the eight computers to search their hard drives simultaneously, the idea of parallel
computing had to be utilized. This is when the same task is executed simultaneously on several
computers [12]. The goal is to achieve faster results. One large problem is broken into several
smaller problems. As a result, the several smaller problems can be solved much faster than the
one bigger problem. This is because the several smaller tasks can be solved all at once by the
multiple computers instead of one computer solving the bigger problem all by itself [12]. This is
an example of the “Single Program, Multiple Data” concept” where there are multiple computers
executing the same program at independent points [13].

The computers need a way to talk to each other so they know what part of the problem to solve.
They use a message passing interface (MPI), which is a programming library that allows
computers in parallel to pass and receive messages between one another. MPI’s goals are
productivity and portability [14]. This project is utilizing the specific, newer MPI library,
MPICH2. Using the idea of parallelism, one problem is broken into smaller one’s called
“processes.” These are distributed amongst the computers. This method is optimized when the
shortest possible run time is achieved, and this occurs when each computer runs one process each
[14].

Tools Required
MPICH2 is only one of the tools required to search the eight computers. The coding languages
and the other software used also have to be taken into account.
Code Languages:

C++: MPICH2 is supported in either C++ or Fortran. For the use of this project we are
using C++ because it is easier to merge with the other parts of the project.

Software:
MPICH2: This isn’t necessarily software, but as described above it is the programming
library that allows the eight computers to send messages back and forth between each
other. Specifically, for this project they are sending a message that says to perform a
Google Desktop search. They are in turn sending back a message that contains their search
results.

Microsoft Visual Studio 2005 Express Edition: This is used to write the program using
MPICH2. It will call the custom Google Desktop search. Once the program is successfully
written, the executable file will be placed on all eight computers in the TEMP folder on the
C:\\ drive. More on this will be explained later.

Program Development

21

Now that the programs and the tools have been laid out, the program can be developed. Before
the coding could start, however, the development environment had to be set up. After everything
was set up, a provided example MPI program was run to learn how a message passing interface
worked and how to use the command line arguments. Following that, the actual development
started. Next, it had to be determined how the host computer would tell the other computers to
search. Either an HTTP request could be sent to each computer or each computer would be told
to instantiate and call a Google Desktop Query object. Both methods have been visited and
tested, and it was decided to use a Google Desktop Query object. After this decision was made,
a mock MPI program was created as a “template” for the final program. The final step was to
actually integrate Google Desktop.

Setup
However, before any of that could be completed, the development environment had to be
prepared. The following is just a brief outline of everything that had to be set up. It does not go
into technical specifics. The complete technical set up can be referenced in Appendix L,
MPICH2 Set up. First, the appropriate library, executable and include files for the MPICH2
library had to be added to the directories in Microsoft Visual Studio. Next, the Microsoft
Software Development Kit (Platform 2) library, executable, and include files had to be added to
the same directories. After that, the appropriate linker libraries for MPICH2 had to be added.
These were “mpi.lib” and “cxx.lib.” After these steps were completed, Microsoft Visual Studio
was completely set up. However, the overall set up isn’t complete.

There were some general Microsoft environment variables that had to be changed. For example,
MPICH2 programs have to be compiled from the command line. In order to do this, mpirun.exe
had to be included the in the Paths under Properties and My Computer. This is accomplished by
adding the path to the MPICH2 bin folder. The location to the TEMP folder also needs to be
added in this same location. This is because all the executable files for the running program are
going to be put in the TEMP folder, and this tells the computer where to look for them.

When all of these tasks were completed, the team tried to compile and run the test program.
However, it wouldn’t work. The program wouldn’t even load. We thought that there was
something wrong with the set up on our end. We then realized that the firewalls on each of the
computers had to be turned off. This was something that is an administrative task. However,
this still didn’t solve the problem. Now the program would load, but the IP addresses for each of
the machines couldn’t be called. We finally asked someone from the computing staff, and it was
determined that it was a school network-related error. The error did actually occur when the IP
addresses were called. The machines themselves saw the name of their computer as
“computername.adit.mines.edu,” but when the IP address request was sent to the school server,
which is Linux based, it saw the names of the machines as “computername.mines.edu.” The
Linux server said that these computers didn’t exist and sent the IP request to the Windows DNS.
However, none of the computers are registered there. Therefore none of the IP addresses could
be called. This problem was fixed by having each of the machines call their IP addresses
dynamically. After this fix, the development environment was finally set up.

Example Program

22

After all of the set up was complete and the set up problems were solved, we got the example
program to run. It was provided to us by the people who developed MPICH2, and it came in the
MPICH2 program folder. It is a program that calculates the number PI using a Taylor series.
The program was compiled on one computer, and then the executable was placed in the TEMP
folder on each of the eight computers under the same name, “Example.exe.”

Once this was completed, the program could be built. Since the executable file is on all of the
computers it doesn’t matter which of them it is ran on. To run the program, pull up the
command prompt by going to Start->Run->cmd. Then on the command line type the following:

“mpiexec –hosts 8 melody 2 minor 2 note 2 rondo 2 meter 2 octave 2 rhythm 2 pitch 2
C:\TEMP\Example.exe”

The breakdown of this command can be seen in Appendix M.

The output from this program displays the number of the process and on what computer that
process number was preformed. After all the process numbers are printed, it displays calculated
value of PI and the error. It also displays the time that it took to complete the task. The output
of this program for each computer running two processes is in Diagram 1. The complete code
can be found in Appendix N: MPICH2 Example Code.

I ran this program several times, and experimented with the different number of process to see if
the error changed and the change in the execution time. I started out with one executed one
computer. This was the shortest execution time; however, it is a very unrealistic setup because
information is more likely to be spread out amongst several computers. After this I added

Diagram 1: PI Program Output

23

computers with one process per computer. The execution time increased up until there were
eight computers and eight processes. This was our maximum computer number, and, therefore,
only the process number could be increased after this point. This means that more than one
process is run per computer. The execution time increased at this point. Therefore, when a
minimum of one process is run per computer, maximization occurs when only one process is run
per computer.

I thought that there would be some kind of relationship between the number of
computers/processes and the error calculation of PI. However, from what I could tell from my
limited testing, the error was quite random, and it did not follow any pattern. The results from
my limited testing can be seen in the Table 1.

of Computers # of Processes Execution Time Error in PI
1 1 .00113789 8.33341e-010
2 2 .00263713 8.33339e-010
3 3 .00576285 8.33339e-010
4 4 .0044770075 8.33331e-010
5 5 .00617744 8.3333e-010
6 6 .157334 8.33331e-010
7 7 .159299 8.33331e-010
8 8 .116259 8.33332e-010
8 16 .472489 8.33334e-010
8 24 1.38179 8.33335e-010

Mock Setup Program
After MPICH2 was running and there was a basic understanding of how a message passing
interface worked, the development of the program could begin. The program that had to be
written for this project has to tell to the eight computers to perform a Google Desktop search for
some specific metadata. The eight computers then have to send back a message that contains
their search results. The results then have to be printed out in an organized form. It was unclear
for a while during the Google Desktop development how the message would be sent and how
search results would be sent back.

Table 1: MPICH2 Example Tests

24

In the meantime, however, it was thought best to develop a mock set up program. We thought
this would at least provide some type of skeleton for when we would know how the messages
would be sent and what would be received. Furthermore, the specific lines of code would just
need to be filled in when the when the Google Desktop plug in was completed. Before this
program was developed, we created a communication diagram so it could be visualized how the
computers would talk to each other and how what the sample output would look like. See
Diagram 2.

This mock set up program uses a simple class that was created just for this purpose. The class
holds simple string and integer information that is comparable to the returned information from a
search such as the number of items found and the name of the items. The set up program has
each rank outputting the information in an organized fashion similar to the way we would want
them to output the information at the completion of the search. It says what computer is in
charge of the information; this is supposed to be similar to saying where the returned objects are
found. Each rank also outputs a phone number; this is similar to returning the total number of
JPEGs found during the search on each computer. Finally, each rank outputs some basic string
information in the form of a first and last name; this is similar to each rank returning the names
of the JPEGs found. The complete code can be found in Appendix C. The example output can
be found below in Diagram 3.

Diagram 2: Communication Chart

25

HTTP Request Vs COM Object
Once this program was designed, it was time to make the decision how the MPICH2 program
would tell the computers to do a Google Desktop search. There were two options: either we
could do an HTTP request or we could use Google’s provided component object model (COM)
for queries.

HTTP Request Approach
Although Google outright stated that the HTTP method is out of date, we decided to try this
direction for simplicity’s sake [15]. It was thought that this method would require less lines of
code within the MPI calls, it would be easier to parse out the results in Extensible Markup
Language (XML) format, and it would be easier than trying to program with COM objects
natively within C++. Furthermore, how it would work is within the MPI code, each node would
make an HTTP request on the local server and the local port to Google Desktop. That tells each
computer to do a Google Desktop search. The results are then put into an XML page and sent
back to the host computer. The host computer then parses out the XML page and displays the
search results.

The example code can be seen in Appendix P [16]. The code itself was found on multiple open
source sites. It creates a function called request that takes four parameters:

1) char* host name: This is the name of the host either in form of the IP address
or in www.hostname.com form. It needs to be in quotes when the function is
called.

2) char* api: This is the additional direction information after the host name or
the IP address. Its in the form of “/…./…./…/”. It has to be in quotes.

3) char* parameters: This is not applicable to our use. Send it a blank string in
the form of “”.

4) string& message: This is note applicable to our use. Send it a blank string in
the form of “”.

When you connect to just a random website on the internet, you use the standard port 80. This is
set within the function definition. For example, to bring up the webpage
http://www.golfsurround.com/usopen/2007/scoring/index2.html, you would use the following
function call:

Diagram 3: Mock Setup Output

26

request(“www.golfsurround.com”, “/usopen/2007/scoring/index2.html/”, “”,””)

The output would then bring this page up in html format in the command prompt screen. We
used examples like this to test this code. Web pages with extensive graphics and videos would
just pull up a redirect link within the command prompt because it couldn’t parse out the
advanced html.

To do a call to run a Google Desktop search, a call has to be made to unique URL for each
computer [15]. This URL was retrieved through a few lines of simple C# code that was written
specifically for this purpose. This code can be seen in Appendix Q. The complete list of unique
URLs for each computer can be seen in Appendix R. The URL for my personal computer is the
following:

http://127.0.0.1:4664/search&s=-FsFyw84DzMIXvzZtnLXaepMy3E?q=
The http://127.0.0.1:4664/ is the same for all the computers. The 127.0.0.1 is the local IP
address and the 4664 is the local port. The rest of the URL is the unique search query for each
computer. The string you want to search for is added after the last equal sign along with the
correct parameters to put the search results’ in XML format. For example, if you want to do a
Google Desktop search for the word “Google Desktop” you would type the following into your
internet browser: http://127.0.0.1:4664/search&s=-
FsFyw84DzMIXvzZtnLXaepMy3E?q=Google+Desktop&format=xml.
The problems with the HTTP request method of calling a Google Desktop search began when we
tried to put this URL into the code. The first thing that had to be done was the port had to be
changed from 80 to 4664. This is done within the function definition. Just simply replace ‘80’
with ‘4664.’ The function call looks like the following:

request(“127.0.0.1,” “/search&s=-
FsFyw84DzMIXvzZtnLXaepMy3E?q=Google+Desktop&format=xml,” “”, “”);

When we ran the program with this function call, it didn’t complete the search. The page that
was brought up in the command prompt was a Google Desktop page that said your request could
not be completed and that we had reached this page on accident. The page was in HTML format,
and not the XML format like requested. The encouraging thing about this error page was that it
was from Google Desktop. This means that the request connected to the correct port and the
correct IP address. The fact that the page wasn’t in XML format and it didn’t complete the
search meant that we thought the program wasn’t passing in the correct additional string. We
tried four days worth of debugging with this program, but we could not get it to work.

COM Object Approach
At this point we decided to try the COM object method of calling a Google Desktop search. All
of the search implementations are within the Google Desktop API. Therefore, all of these
functions are within the Google Desktop side of the development. Furthermore, a COM object
was developed, as discussed earlier, to for the search requests. All that has to be done on the
MPI side of this is instantiate and implement the COM object within the MPICH2 code.

While the Google Desktop JPEG indexer was being developed, we wanted to try and run practice
searches on the eight computers. These practice searches would just be a normal desktop search

27

of the computer. The purpose of running these searches is to make sure that the Google Desktop
environment could be ran in parallel. This still required some development from the Google
Desktop side because it required the use of the ParallelSearchComponents.dll and the
GoogleDesktopAPIStrong.dll.

The actual programming of this demo implementation was quite simple. We took the Mock Set
Up program and removed the calls to the objects that were created. These were replaced by a
call to a function called Query() that contained the instantiation and implementation if the
Google Desktop Query API. The complete code can be seen in Appendix S.

Once the appropriate .dll’s were registered for the Google Desktop objects, the program could be
compiled and ran. To run this program in parallel, however, the .dll files had to installed and
registered on all eight machines. Also, the executable file had to be transferred and put into the
TEMP folder. A similar call on the command line like the one used in the original demo
program was used to run the program. This is where our project hit its final snag. All though the
program compiled fine in Microsoft Visual studio, we got a run time error when the program
started. The exact error message can be seen in the screen shot in Diagram 4.

According to the technical department, this error is most likely due to .NET compatibility.
Apparently, MPICH2 (even more generally MPI) is not compatible with .NET versions of 2.0
and later. It is, however, compatible with .NET 1.1. We received this error on the very last day
we had for implementation. Therefore, we were unable to debug this error.

Conclusions and Future Work
Although the MPICH2 part of the project wasn’t fully completed, there were still several things
that were accomplished. We were able to configure an MPI setup for Windows and Microsoft
Visual Studio C++. We also learned about the MPICH2 environment through the exploration of
the example PI program. Most importantly, the framework for the MPI/Google Desktop
program has been written. Actually, the entire MPICH2/Google Desktop program has been
written, and it compiles perfectly fine. The error that we received during runtime has to do with
the environment that we are working and the versioning of the software that we used to compile
the plug-ins.

Diagram 4: Final Error Message

28

In order for this project to continue in its entirety, obviously, the .NET bug has to be fixed. Once
this is completed, the actual searches can be run. Even though the code that is currently in the
MPI/GD integration program only runs a normal GD search sans JPEGs, nothing needs to be
changed in order to actually search for JPEGs. In order to run the metadata searches, changes
need to be made on the plug-in side of the implementation. Therefore, what was produced
during this field session is what is needed to perform the parallel searches in full.

Conclusion
Although we do not have search results with which to analyze the effectiveness of parallel
searching and indexed searching, we have been able to produce two Google Desktop plug-ins for
indexing and querying that can be utilized for these searches. We have also created a dataset
with searchable metadata and a process for generating files for a dataset. Finally we have
developed an MPICH2 utility that is capable of using the Google Desktop plug-ins for parallel
searching.

Future Work
The original scope of this project actually included performing and analyzing the parallel
searches of the metadata. We were unable to get to this portion of the project due to the
constraints on time. To fully complete this project, we want to combine parallelism using MPI
with efficient search techniques using Google Desktop and compare the results with those found
using Windows' old file search. The efficiency of these data searches will be numerically
analyzed and represented graphically.

Originally, we had four different searches that we wanted to run:
1) A one computer serial search of the entire dataset. The dataset will not be indexed for

this search. To be able to search the entire dataset, we would use an external hard
drive.

2) A multiple computer serial search with the data set distributed amongst the
computers. The data set will not be indexed for this search.

3) A one computer indexed search of the entire dataset. This is similar to the first search
except that Google Desktop will index the data before it is searched.

4) A multiple computer indexed search.

Throughout the project, we also had some other thoughts of different ways to analyze the data
and other searches we could perform:

1) Change the amount of data that each computer has. For example, we would run the
multiple computer searches with each computer containing equal amounts of data.
Then we would try running the searches with the data unevenly distributed amongst
the computers. The purpose of this would be to consider an optimum file
organization method for companies with large amounts of searchable data.

2) Determine if the Law of Diminishing Marginal Returns holds for parallel computing.
We would like to see if there are a maximum number of computers that creates peak

29

searching performance, where after this number each additional computer diminishes
performance of the searching task.

3) See if we can predict search times for other numbers of computers. We have eight
computers. We can run searches on one computer, then two computers, etc up to
eight computers. We will then have search times for eight computers, and we want to
see if we can interpolate these results to more computers.

30

References

[1] Elysium Ltd, “JPEG,” http://www.jpeg.org/ Accessed June 20, 2007.

[2] “EXIF.org,” http://www.exif.org/ Accessed June 20, 2007.

[3] “e695. Saving a Generated Graphic to a PNG or JPEG File,”
http://www.exampledepot.com/egs/javax.imageio/Graphic2File.html Accessed June 20, 2007.

[4] MSDN “How to: Read Image Metadata” http://msdn2.microsoft.com/en-
us/library/xddt0dz7.aspx Accessed June 20, 2007.

[5] “Description of Exif File Format,”
http://www.media.mit.edu/pia/Research/deepview/exif.html Accessed June 20, 2007.

[6] “Normal distribution,” http://en.wikipedia.org/wiki/Normal_distribution Accessed June 20,
2007.

[7] “Generating Gaussian Random Numbers,” http://www.taygeta.com/random/gaussian.html
Accessed June 20, 2007.

[8] “Using the LockBits method to access image data,”
http://www.bobpowell.net/lockingbits.htm Accessed June 20, 2007.

[9] “Image File Builder” http://www.codeproject.com/useritems/ImageFileBuilder.asp Accessed
June 20, 2007.

[10] “JPEG Metadata Format Specification and Usage Notes,”
http://java.sun.com/j2se/1.5.0/docs/api/javax/imageio/metadata/doc-files/jpeg_metadata.html
Accessed June 20, 2007.

“Parallel Computing”
[12] http://en.wikipedia.org/wiki/Parallel_computing Accessed June 15, 2007

“Single Program Multiple Data”
[13] http://en.wikipedia.org/wiki/Single_program_multiple_data, Accessed June 15, 2007

“Message Passing Interface”
[14] http://en.wikipedia.org/wiki/Message_passing_interface, Accessed June 15, 2007

“Google Desktop Query API”
[15] http://desktop.google.com/dev/queryapi.html, Accessed June 15, 2007

31

“HTTP Source Code”
[16] http://www.gamedev.net/community/forums/topic.asp?topic_id=324756, Accessed June 15,
2007

32

Appendix A: Dataset Size per Computer

Dataset Size Per Computer
Computer Data (GB)

Rondo 9.46

Rhythm 9.47

Pitch 9.52

Octave 9.49

Note 9.49

Minor 9.48

Meter 9.51

Melody 9.49

Appendix B: Picture Generator
Pictures Class:

//Picture Generator
//Sources: http://www.exampledepot.com/egs/javax.imageio/Graphic2File.html
//http://schmidt.devlib.org/java/image-faq/read-write-image-files.html
//http://forum.java.sun.com/thread.jspa?threadID=478634&start=0&tstart=0

import java.awt.Color;
import java.awt.GradientPaint;
import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Rectangle2D;
import java.awt.image.BufferedImage;
import java.awt.image.RenderedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;

import javax.imageio.ImageIO;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class Pictures extends JFrame {

/**
 *
 */
private static final long serialVersionUID = 1L;

private JTextField text;

private JPanel panel;

/*
 * Default Constructor for Pictures Object Generates JPEGS

33

 */
public Pictures(int numberpictures, int startingpt, String location,

String name, String extension) {

// instantiate frame, panel and textfield
super();
panel = new JPanel();
text = new JTextField();

// configure frame
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(100, 100);

// used to calculate total runtime
long starttime = System.currentTimeMillis();

// loop that controls how many JPEGs are generated
for (int i = 0; i < numberpictures; i++) {

// Random object used to generate random numbers for JPEG //specs
Random rand = new Random();

// height and width for the BufferedImage (translated later //to JPEG)
// height and width are random values between 2000 and 3000
int width = 2000 + rand.nextInt(1000);
int height = 2000 + rand.nextInt(1000);

// Create a buffered image in which to draw
BufferedImage bufferedImage = new BufferedImage(width,

height, BufferedImage.TYPE_4BYTE_ABGR_PRE);

// Create a graphics contents on the buffered image
Graphics2D g2d = bufferedImage.createGraphics();

// Draw graphics
// Graphics are drawn based on random boolean types
// Graphics have random colors, sizes, and placements
g2d.setColor(new Color(rand.nextInt(255),

rand.nextInt(255), rand.nextInt(255)));
g2d.fillRect(0, 0, width, height);
if (rand.nextBoolean() == true) {

// Draws random oval
g2d.setColor(new Color(rand.nextInt(255),
rand.nextInt(255), rand.nextInt(255)));
g2d.fillOval(rand.nextInt(300), rand.nextInt(300), width - rand.nextInt(3000),
height - rand.nextInt(3000));

}
if (rand.nextBoolean() == true) {

// Draws another random oval
g2d.setColor(new Color(rand.nextInt(255),
rand.nextInt(255), rand.nextInt(255)));
g2d.fillOval(rand.nextInt(300), rand.nextInt(300), rand.nextInt(3000),
rand.nextInt(3000));

} else {

34

// Draws a random line with Gradient coloring if
// above oval not
// drawn
int x = rand.nextInt(3000);
Line2D ln = new Line2D.Double(x,rand.nextInt(2000), x, rand.nextInt(2000));

GradientPaint gp = new GradientPaint(75, 75,
new Color(rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)),95,
95,
new Color(rand.nextInt(255), rand.nextInt(255),
rand.nextInt(255)), true);

// Fill with a gradient.
g2d.setPaint(gp);
g2d.fill(ln);

}
if (rand.nextBoolean() == true) {

// Draws random Rectange
g2d.setColor(new Color(rand.nextInt(255),
rand.nextInt(255), rand.nextInt(255)));
g2d.fillRect(rand.nextInt(200), rand.nextInt(200), width - rand.nextInt(3000),
height - rand.nextInt(3000));

} else {
// Draws random ellipse with Gradient coloring if
// above rectangle isn't drawn
Ellipse2D elp = new

Ellipse2D.Double(rand.nextInt(3000),
rand.nextInt(3000), rand.nextInt(3000), rand.nextInt(3000));

GradientPaint gp = new GradientPaint(75, 75,
new Color(rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)),95,
95,
new Color(rand.nextInt(255), rand.nextInt(255),
rand.nextInt(255)), true);

// Fill with a gradient.
g2d.setPaint(gp);
g2d.fill(elp);

}
if (rand.nextBoolean() == true) {

// Draws another random rectangle
Rectangle2D rect = new

Rectangle2D.Double(rand.nextInt(3000),
rand.nextInt(3000), rand.nextInt(3000),
rand.nextInt(3000));

GradientPaint gp = new GradientPaint(75, 75,
new Color(rand.nextInt(255), rand.nextInt(255), rand.nextInt(255)),95,

95,
new Color(rand.nextInt(255), rand.nextInt(255),

rand.nextInt(255)), true);

// Fill with a gradient.
g2d.setPaint(gp);
g2d.fill(rect);

} else {

35

// Draws another random rectangle if above rectangle //isn't drawn
g2d.setColor(new Color(rand.nextInt(255),

rand.nextInt(255), rand.nextInt(255)));
g2d.fillRect(rand.nextInt(200), rand.nextInt(200),

rand.nextInt(3000), rand.nextInt(3000));
}

// Graphics context no longer needed so dispose it
g2d.dispose();

// Create an image to save
RenderedImage rendImage = bufferedImage;

// Write generated image to a file
try {

// Save as JPEG using the ImageIO to write a jpg //formatted file
File file = new File(location + "/" + name + (

startingpt + i) + "." + extension);
ImageIO.write(rendImage, "jpg", file);

} catch (IOException e) {
} catch (Exception e) {

e.printStackTrace();
}

}
long endtime = System.currentTimeMillis();

// Display name of image to panel
text.setText(“Time: “ + (endtime – startime));
panel.add(text);
getContentPane().add(panel);
setVisible(true);
System.out.println("Time: " + (endtime - starttime));

}

}
Setup Class (GUI);
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;

public class Setup extends JFrame implements ActionListener {

private JPanel pane;

private JTextField numpictures;

private JTextField firstpicture;

36

private JTextField folderlocation;

private JTextField extensiontxt;

private JTextField picturenames;

private JButton enter;

private JLabel numpictlbl;

private JLabel fstpiclbl;

private JLabel fldloclbl;

private JLabel picnamelbl;

private JLabel extlbl;

Setup() {

// Initial setup of JFrame
super("Setup");
this.setSize(1200, 150);

// Setup of JPanel
pane = new JPanel();

// Initializing labels, textfields and button
numpictlbl = new JLabel("Enter number pictures to be created: ");
fstpiclbl = new JLabel("Enter starting number of pictures to be

created: ");
fldloclbl = new JLabel("Enter location for pictures to be placed:

");
picnamelbl = new JLabel("Enter the name associated with pictures:

");
extlbl = new JLabel("Enter the extension associated with

pictures: ");

numpictures = new JTextField(15);
firstpicture = new JTextField(15);
folderlocation = new JTextField(100);
picturenames = new JTextField(60);
extensiontxt = new JTextField(10);

enter = new JButton("Enter");
enter.addActionListener(this);

// Add objects to pane
pane.add(numpictlbl);
pane.add(numpictures);
pane.add(fstpiclbl);
pane.add(firstpicture);
pane.add(fldloclbl);
pane.add(folderlocation);
pane.add(picnamelbl);
pane.add(picturenames);

37

pane.add(extlbl);
pane.add(extensiontxt);
pane.add(enter);

// Final setup of JFrme
this.getContentPane().add(pane);
this.setVisible(true);

}

public static void main(String[] args) {
// create Setup object
new Setup();

}

public void actionPerformed(ActionEvent arg0) {
// TODO Auto-generated method stub
int numberpictures, start, height, width;
String location, name, extension;

numberpictures = new Integer(numpictures.getText());
start = new Integer(firstpicture.getText());
//location = "testimages/testjavaimages";
location = folderlocation.getText().toString();
name = picturenames.getText().toString();
extension = extensiontxt.getText().toString();

//Create Pictures Object
new Pictures(numberpictures, start, location, name, extension);

}

}

Appendix C: Tag Adder Versions
//Basic Tag Adder Program
using System;
using System.Collections.Generic;
using System.Text;
using System.Drawing;
using System.Drawing.Imaging;
using System.Timers;
namespace ConsoleApplication1
{
 class ProvideJpeg
 {
 private Random rand;
 static void Main(string[] args)
 {
 ProvideJpeg peg = new ProvideJpeg();
 peg.rand = new Random();
 DateTime begginingSystemTime = DateTime.Now;
 for (int i = 0; i < 2400; i++)

{
Bitmap jpeg = new Bitmap(@"C:\Documents and Settings\0mcsgoogle\workspace\Picture

38

Generator\images4\taggedjavaimages" + (26401 + i) + ".jpg");
 jpeg.SetPropertyItem(peg.NewTag(jpeg));
 jpeg.SetPropertyItem(peg.NewTag2(jpeg));
 jpeg.SetPropertyItem(peg.NewTag3(jpeg));
 jpeg.SetPropertyItem(peg.NewTag3(jpeg));
 jpeg.Save(@"C:\Documents and Settings\0mcsgoogle\My Documents\Parallel Search\Normaltest0xfff7,1-

2400\normaltestimages" + (1 + i) + ".jpg");
 }
 DateTime endingSystemTime = DateTime.Now;
 Console.WriteLine(endingSystemTime - begginingSystemTime);
 Console.ReadLine();
 }
 private PropertyItem NewTag(Bitmap bit)
 { … }
 }
}
Possible NewTag(…) functions:
Random Byte Tag
 private PropertyItem NewTag(Bitmap bit)
 {
 // Get PropertyItem contained in all the JPEGs
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 // Set the id, type, value and length for the tag to be added
 prop2.Id = 271;
 prop2.Type = 2;
 byte[] y = { 0, 0, 0, 0 };
 // Fills byte[] with random byte values
 rand.NextBytes(y);
 prop2.Value = y;
 prop2.Len = y.GetLength(0);
 // Return the PropertyItem with the new characteristics
 return prop2;
 }
Constant Tag
 private PropertyItem NewTag(Bitmap bit)
 {
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 prop2.Id = 0xff55;
 prop2.Type = 2;
 // Value to be input into tag
 byte[] y = { 0x4C, 0x41, 0x4E, 0x4C, 0x2C, 0x20, 0x50, 0x53 };
 prop2.Value = y;
 prop2.Len = y.GetLength(0);

 return prop2;
 }
Weighted Tag (10%, 15%, 25%,50%)
 private PropertyItem NewTag(Bitmap bit)
 {
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 prop2.Id = 0xfff6;
 prop2.Type = 2;
 if (rand.NextDouble() <= .1)
 {
 byte[] y = { 48, 49, 50, 51 };
 prop2.Value = y;

39

 prop2.Len = y.GetLength(0);
 }
 else if (rand.NextDouble() <= .25)
 {
 byte[] y = { 65, 66, 67, 68, 69 };
 prop2.Value = y;
 prop2.Len = y.GetLength(0);
 }
 else if (rand.NextDouble() <= .5)
 {
 byte[] y = { 88, 89, 90 };
 prop2.Value = y;
 prop2.Len = y.GetLength(0);
 }
 else
 {
 byte[] y = { 97, 98, 99, 100, 101, 102 };
 prop2.Value = y;
 prop2.Len = y.GetLength(0);
 }
 return prop2;
 }
Box-Muller Tag
 private PropertyItem NewTag(Bitmap bit)
 {
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 prop2.Id = 0xfff7;
 prop2.Type = 2;
 byte[] y = { 0, 0, 0, 0 };
 // Gaussian() function uses Box-Muller Transformation described below
 int x = (int)(Gaussian() * 100);
 System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
 string value = x.ToString();
 y = encoding.GetBytes(value.ToCharArray());
 prop2.Value = y;
 prop2.Len = y.GetLength(0);
 return prop2;
 }
Gaussian
//supposed to generate random numbers, originally in pairs
 private float Gaussian()
 {
 float x1, x2, w, y1; //y2; - second value which algorithm usually produces
 do
 {
 x1 = (float)(2.0 * rand.NextDouble() - 1.0);
 x2 = (float)(2.0 * rand.NextDouble() - 1.0);
 w = x1 * x1 + x2 * x2;
 } while (w >= 1.0);
 w = (float)(Math.Sqrt((-2.0 * Math.Log(w, Math.E)) / w));
 y1 = x1 * w;
 //y2 = x2 * w;
 return y1;
 }
Uniform Discrete (25% each of 4 values)

40

 private PropertyItem NewTag(Bitmap bit)
 {
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 prop2.Id = 271;
 prop2.Type = 2;
 if (rand.NextDouble() < .25)
 {
 prop2.Len = 4;
 byte[] y = { 0x78, 0x79, 0x7A };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .5)
 {
 prop2.Len = 6;
 byte[] y = { 0x41, 0x42, 0x43, 0x44, 0x45 };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .75)
 {
 prop2.Len = 5;
 byte[] y = { 0x53, 0x4F, 0x4E, 0x59 };
 prop2.Value = y;
 }
 else
 {
 prop2.Len = 6;
 byte[] y = { 0x43, 0x61, 0x6E, 0x6F, 0x6E };
 prop2.Value = y;
 }
 return prop2;
 }
Discrete Normal (2.3%, 13.6%, 34.1%)

private PropertyItem NewTag3(Bitmap bit)
 {
 PropertyItem prop2 = bit.GetPropertyItem(20624);
 prop2.Id = 0xfff9;
 prop2.Len = 4;
 prop2.Type = 2;
 if (rand.NextDouble() < .023)
 {
 byte[] y = { 65, 66, 67 };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .159)
 {
 byte[] y = { 68, 69, 70 };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .5)
 {
 byte[] y = { 97, 98, 99 };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .841)
 {

41

 byte[] y = { 100, 101, 102 };
 prop2.Value = y;
 }
 else if (rand.NextDouble() < .977)
 {
 byte[] y = { 49, 50, 51 };
 prop2.Value = y;
 }
 else
 {
 byte[] y = { 120, 121, 122 };
 prop2.Value = y;
 }

 return prop2;

 }

Appendix D: Parallel Search Tag Adder (Saves to new folder and deletes old
folder)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Text;
using System.Windows.Forms;

namespace WindowsApplication1
{
 public partial class Form1 : Form
 {
 private Random rand;

 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 rand = new Random();
 // Get all pictures in Directory
 DirectoryInfo directory = new

DirectoryInfo(this.directuntagged.Text);
 DateTime begginingSystemTime = DateTime.Now;
 // Create a FileInfo[] from the directories
 FileInfo[] files = directory.GetFiles("*" +

this.initexttxt.Text);

42

 int i = 0;

 // Loop through FileInfos
 foreach (FileInfo file in files)
 {
 // Create filestream which can be closed
 // so that files can be deleted
 FileStream filestm = file.Open(System.IO.FileMode.Open);
 // Create Bitmap from filestream
 Bitmap bit = new Bitmap(filestm);

 bit.SetPropertyItem(this.CameraMake(bit));
 …

 // Number assigned to new file
 int start = (int)(startnumber.Value) + i;

 // Save the file
 bit.Save(this.directuntagged.Text + @"\csmlanlps" + start +

this.extfintxt.Text);

 // Close filestream
 filestm.Close();
 // Delete File
 file.Delete();

 i++;
 }
 DateTime endingSystemTime = DateTime.Now;

 this.updatetxt.Text = (endingSystemTime –
begginingSystemTime).ToString();

 }

// Various tags to be added
…

 }

}

Appendix E: Parsing Code

//http://www.codeproject.com/useritems/ImageFileBuilder.asp

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Text;
using System.Windows.Forms;

43

namespace ParallelSearchJPEGs
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void uxJPEGBrowseButton_Click(object sender, EventArgs e)
 {
 OpenFileDialog dialog = new OpenFileDialog();
 if (DialogResult.OK == dialog.ShowDialog(this))
 {
 this.uxJPEGUrlTextBox.Text = dialog.FileName;
 }
 }

 private void uxJPEGProcessButton_Click(object sender, EventArgs e)
 {
 Bitmap jpeg = new Bitmap(this.uxJPEGUrlTextBox.Text);

 foreach (PropertyItem prop in jpeg.PropertyItems)
 {
 this.Print("Tag ID Number= " + prop.Id.ToString());
 this.Print("\r\n");
 this.Print("Type= " + prop.Type.ToString());
 this.Print("\r\n");
 this.Print("Length= " + prop.Len.ToString());
 System.Text.ASCIIEncoding encoding = new

System.Text.ASCIIEncoding();
 string manufacturer = encoding.GetString(prop.Value);
 this.Print("Tag Value= " + manufacturer);
 this.Print("\r\n");
 if (prop.Id == 0x5090)
 {
 this.Print("Contains Luminance table");
 this.Print("\r\n");
 }
 else if (prop.Id == 0x05091)
 {
 this.Print("Contains Chrominance table");
 this.Print("\r\n");
 }

 this.Print("\r\n");
 }
 }

 private void Print(string message)
 {
 this.uxOutputTextBox.Text += message;
 }

}

44

Appendix F: Tags by Group

Tags Inside Groups
Group Tag ID Hexadecimal Contents

Uniform Camera 271 0x010F Uniform Discrete (25% each of 4 values)

Uniform Camera 65534 0xFFFE Constant (Uniform)

Uniform Camera 65535 0xFFFF Constant (LANL, PS)

Uniform Camera 20624 0x5090 Luminance Table

Uniform Camera 20625 0x5091 Chrominance Table

Uniform Random 65365 0xFF55 Constant (LANL, PS)

Uniform Random 65520 0xFFF0 Constant (Uniform)

Uniform Random 65528 0xFFF8 Random Bytes

Uniform Random 20624 0x5090 Luminance Table

Uniform Random 20625 0x5091 Chrominance Table

Twice Tagged 65534 or 65533 0xFFFE or 0xFFFD Constant

Twice Tagged 65535 0xFFFF Constant

Twice Tagged 20624 0x5090 Luminance Table

Twice Tagged 20625 0x5091 Chrominance Table

Taggedjavaimages 65535 0xFFFF Constant

Taggedjavaimages 20624 0x5090 Luminance Table

Taggedjavaimages 20625 0x5091 Chrominance Table

NormalTest0xfff7 271 0x010F Random Bytes

NormalTest0xfff7 65365 0xFFFF Constant (LANL, PS)

NormalTest0xfff8 65527 0xFFF7 Box-Muller Integer

NormalTest0xfff9 20624 0x5090 Luminance Table

NormalTest0xfff10 20625 0x5091 Chrominance Table

Normal0xfff9 65365 0xFF55 Constant (LANL, PS)

Normal0xfff10 65521 0xFFF1 Constant (Uniform)

Normal0xfff11 65529 0xFFF9 Discrete Normal (2.3%, 13.6%, 34.1%)

Normal0xfff12 20624 0x5090 Luminance Table

Normal0xfff13 20625 0x5091 Chrominance Table

Camera Tagged 271 0x010F Various

Camera Tagged 65535 0xFFFF Constant (LANL, PS)

Camera Tagged 20624 0x5090 Luminance Table

Camera Tagged 20625 0x5091 Chrominance Table

CSMLANLPS 271 0x010F Constant (Doughnut)

CSMLANLPS 65514 0xFFEA Uniform Discrete (25% each of 4 values)

CSMLANLPS 65516 0xFFEC Random Bytes

45

CSMLANLPS 65518 0xFFEE Weighted (80%, 10%, 7%, 3%)

CSMLANLPS 65523 0xFFF3 Constant (CSMLANLPS)

CSMLANLPS 65526 0xFFF6 Weighted (10%, 15%, 25%, 50%)

CSMLANLPS 65527 0xFFF7 Box-Muller Integer

CSMLANLPS 65529 0xFFF9 Discrete Normal (2.3%, 13.6%, 34.1%)

CSMLANLPS 20624 0x5090 Luminance Table

CSMLANLPS 20625 0x5091 Chrominance Table

Appendix G: Dataset

Dataset

Group Size (GB)
Number of

JPEGs
Average Size per

Image (KB)
Uniform Camera 8.21 38,400 213.72

Uniform Random 8.21 38,400 213.83

Twice Tagged 4.11 19,200 213.8

Taggedjavaimages 4.11 19,200 214.27

NormalTest0xfff7 4.1 19,200 213.59

Normal0xfff9 16.43 76,800 213.87

Camera Tagged 16.43 76,800 213.88

CSMLANLPS 8.28 38,400 215.6

Blankjavaimages 7.79 38,400 202.81

Total 77.66 364,800

Appendix H: C# JPEG Generator
//Source: http://www.codeproject.com/useritems/ImageFileBuilder.asp

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Drawing.Drawing2D;
using System.Windows;
using System.Drawing.Imaging;
using System.Drawing;

namespace ConsoleApplication1
{
 class Program
 {

 static void Main(string[] args)
 {
 // Set counter, create Bitmap, and save Bitmap
 DateTime begginingSystemTime = DateTime.Now;

46

 Program pro = new Program();
 Bitmap bit = pro.CreateBitmap(100, 100);
 bit.Save(@"C:\Users\Parallel Search\testimage.jpg");
 DateTime endingSystemTime = DateTime.Now;
 Console.WriteLine(endingSystemTime - begginingSystemTime);
 Console.ReadLine();
 }

 public Bitmap CreateBitmap(int width, int height)
 {
 try
 {
 Bitmap bmp = new Bitmap(width, height);
 Random rand = new Random();

 // Sets the color of the picture pixel by pixel
 for (int y = 0; y < bmp.Height; y++)
 {
 for (int x = 0; x < bmp.Width; x++)
 {
 // Creates 32 bit depth, where alpha is 255
 Color col = Color.FromArgb(rand.Next(255),

rand.Next(255), rand.Next(255));
 bmp.SetPixel(x, y, col);
 }
 }
 return bmp;
 }
 catch (Exception ex)
 {
 ex.GetType();
 return null;
 }
 }
 }
}

Appendix I: Referencing the GD (Google Desktop) API

First and foremost, how did we learn anything of the information presented about GD’s API in the body
of the report? We could have just read Google’s online API descriptions, which we indeed did; but if you
compare our descriptions, you will find a few notable discrepancies. The API is given in terms of three
IDL files (Interface Definition Language), only one of which we actually used (GoogleDesktopAPI.idl);
we might have waded through all that syntax, but we didn’t.

IDL files are used to fully define the interfaces of COM objects in a language-independent manner. Their
function is to be compiled by the “Microsoft IDL Compiler” (Midl.exe) into a binary interface definition
file, called a Type Library (*.TLB files). These can then be directly referenced using #import statements
in C++ code, or added as references in Visual Studio VB projects (actually, the IDL files can be added as
references in VB projects; Visual Studio VB simply performs the Midl.exe compilation automatically).
However, for a C# project, we needed a DLL. Thankfully, Microsoft has tools to import a TLB into DLL
augmenting the original interface definitions with meta-data sufficient to use the DLL as a .Net assembly.
This tool is TlbImp.exe (“TLB Importer”). (There is also a tool, TlbExp.exe, which exports a .Net
assembly into a TLB file.)

47

So, we compiled all needed IDL API files (which turned out to be only the GoogleDesktopAPI.idl file)
into Type Libraries using Midl.exe. Then, we exported the TLB that was compiled into a .Net “interop”
DLL - as such exported TLBs are called – using TlbExp.exe.

At this point, just because the interop DLLs exist, doesn’t mean they are usable DLLs in terms of COM.
In other words, adding a reference to the GoogleDesktopAPI.dll would allow you to eliminate all
compile-time errors. However, when the referencing code that gets instances of any of the contained
classes or interfaces runs, there will be a myriad of runtime exceptions. To eliminate these then, we have
to register any interop DLLs using RegAsm.exe (“Register Assembly”). Further, with just that, when we
run, we will receive an extremely cryptic HRESULT error having something to do with a missing file.
The missing file is the DLL because it is not actually in a location where Windows can find it; that place
is the Global Assembly Cache, or the GAC. To add it to the GAC, we can use GacUtil. At this point, we
can reference the DLL in our .Net project by selecting “Add a Reference” from the Project or other menus
in Visual Studio and browsing to DLL you just created. With that, all compile-time and runtime errors
with our referencing code will have been resolved.

Step-by-Step
1. Compile the IDL into a TLB with Midl.exe. Command line: ‘midl <COM API>.idl

/tlbout:<whatever you want to call it>.tlb’
2. Create a strong name key file. Command line: ‘sn –k <Some arbitrary keyfile

name>.snk’
3. Import the TLB into a DLL with TlbImp.exe, signing it with the strong name key file.

Command line: ‘tlbimp <whatever you called it>.tlb /keyfile:<That arbitrary name you
chose for the keyfile>.snk /out:<whatever you want to call the .Net-consumable
DLL>.dll’

4. Register the new assembly with RegAsm. Command line: ‘regasm /register <whatever
you called the .Net-consumable DLL>.dll’

5. Add the assembly to the Global Assembly Cache. Command line: ‘gacutil /i <whatever
you called the .Net-consumable DLL>.dll’

P.S. You’ll notice that the strong name key file things in step 2 and 3 were never justified; this is
because they aren’t understood. The fact is this though, if the project that defines our indexing
plugin has a strong name for whatever reason, all DLLs it references will have to have strong
names. Therefore, if we don’t give the GD API DLL a strong name, we won’t be able to use it in
all projects. Otherwise though, we aren’t at all sure exactly what this does.

Appendix J: Writing a Google Desktop Plugin with .Net

1. Create a class library project.

2. Go to the project’s properties, and do two things:

a. Go to the assembly tab and click the Assembly Information button; on the dialog that
appears – at the bottom – check the ‘Make assembly COM-visible’ box.

b. Go to the Build tab and check the ‘Register for COM Interop’ box. (This simply calls
RegAsm on the DLL built for your project, so this step isn’t necessary if you plan to do

48

this manually. The argument for doing this manually is that you can generate a TLB
from your DLL in one step with RegAsm using the /tlb: option.)

3. Open the Add Reference dialog (you can do this several ways; the more consistent way is by
selecting ‘Add Reference…’ from the Project menu), and select the Browse tab. Browse to the
DLL that was made from the GoogleDesktopAPI.idl, and add it.

4. For the class you want to be the plugin (i.e. a COM object), assign it a GuidAttribute by typing
[Guid(“<your GUID>”)], where <your GUID> is a valid GUID (which you can obtain using any
of many online tools if you don’t have a full version of Visual Studio 2005, which we didn’t).
Whenever you need to register that class as a plugin for anything with GD’s API, you’ll have to
use that string. We recommend copying it into a static string member of your class for easy and
reliable referencing.

5. Next, you’ll need to have two static methods (privacy doesn’t matter for it) that will be called by
Windows when the class’ DLL is registered and unregistered, respectively. You’ll do this by
assigning a ComRegisterFunctionAttribute or ComUnregisterFunctionAttribute to a single static
method of any class in the project/library/assembly/DLL. This is done by typing
‘[ComRegisterFunction]’ or ‘[ComUnregisterFunction]’ just above the given method. To have
access to this attribute, you’ll have to add a #using directive for the
System.Runtime.InteropServices namespace at the beginning of whichever source file has the
class that has the static methods to perform the registration.

6. At this point, it’s a matter of implementing the correct registration anad unregistration of your
plugin in the method specified by the respective COM function attribute. For any kind of plugin,
registration starts and ends with calls to the StartRegistration and EndRegistration methods in an
instance of the GoogleDesktopRegistrarClass GD API class. In-between however, the process is
slightly different. For both, a call to GetRegistrationInterface gets the specific registrar for a
query plugin or indexing plugin. When an object of that interface is gotten, then the process
changes: For an indexer, RegisterIndexingPlugin is called with the extension of the files the
indexer with handle. For a querying plugin, RegisterPlugin is called, returning the integer cookie
that then has to be saved.

7. Once this registration has been implemented, the process is entirely different. For an indexer, you
simply make sure that the class whose GUID you registered implements
DgoogleDesktopFileNotify. And then, you’ll have to implement the HandleFile method of that
interface, and use the method’s ‘full_path_to_file’ string parameter and ‘event_factory’
IGoogleDesktopEventFactory parameters to send an event to GD with sufficient descriptive
information about the handled file.

Appendix K: Referencing a .Net COM Object in a Native C++ Program

The process of referencing a .Net DLL’s public components in native C++ is basically the process of
converting Google’s API IDLs to DLLs in reverse (performing RegAsm and GacUtil registration), so
please refer to Appendix. The notable exception is that we will only go back to a TLB, not all the way to
an IDL. That said, once a valid TLB is gotten, we must make sure it is in a directory referenced by the

49

C++ project. (In Visual Studio C++ Express Edition, this can be done by going to the References section
of the project’s Property Pages and adding the appropriate path to the ‘Reference Search Paths’.)

Step-by-Step
1. Compile your DLL.
2. Register it with RegAsm and create a TLB from it in one step using the following command line:

‘regasm <your DLL>.dll /tlb:<your TLB version’s name>.tlb’
3. Place the TLB of your assembly in a directory relative to the C++ project you’re developing.
4. Add a Path to the Reference Search Paths in the References Property Page of the C++ project.

50

Appendix L: MPICH2 Software Set Up
These steps assume that Microsoft Visual Studio 2005 Express Edition, the Microsoft Software
Development Kit Platform 2, and MPICH2 have been installed on all eight computers.

a. Add the MPICH2 library, bin, and include folders to the
Tools->Options->Projects and Solutions->VC++
Directories tab. These files are found in the MPICH2
program file. This step only has to be done once. This can
be seen in Diagram 3.

b. The Microsoft Software Development Kit Platform 2
library, bin, and include folders have to be added. These
files are found in the Microsoft SDK program file. To set
this up, we followed the same steps as in a.

c. Add the linker libraries. This is done by going to Project-
>Program Properties->Configuration Properties->Linker-
>Additional Dependencies. In this box type “mpi.lib” and
“cxx.lib.” If the above mentioned software has already
been installed, then these two library files are already
installed on the computer. This can be seen in Diagram 4.

d. Set Up Paths: In order to compile the MPICH2 programs,
the mpirun.exe had to be included in the Paths on the
computer. To do this, go to My Computer->Properties-
>Advanced->Environment Variables. Then add the path to
the MPICH2 bin and the path to the TEMP folder on the C
drive. This can be seen in Diagram 5.

e. The firewall system has to be disabled. This is something
that is individual to each computer. For computers running
at CSM, this is an administrative task.

f. The IP address for each computer has to be called
dynamically. This was something that we had to have an
Administrator do.

g. Have to include “mpi.h” in the header for every program
that uses MPI.

Appendix M: mpiexec Breakdown
The command to run an MPI program:
mpiexec –hosts 8 melody 2 minor 2 note 2 rondo 2 meter 2 octave 2 rhythm 2 pitch 2
C:\TEMP\Example.exe

1) “mpiexec”: Tells the computer that it is running an MPI program. It is the call
to run anything that uses MPICH2.

2) “-hosts 8”: Tells the computer that there are 8 computers that are going to run
the program.

3) “melody 2 minor 2 note 2 rondo 2 meter 2 octave 2 rhythm 2 pitch 2”: These
are the names of the eight computers. Following each name is the number of

51

processes or “mini-problems” that that computer is supposed to run. In this
case, each computer is running two processes.

4) “C:\TEMP\Example.exe”: This is the complete path to the executable file of
the program that is going to be run.

Appendix N: MPICH2 Example Code
/* -*- Mode: C++; c-basic-offset:4 ; -*- */
/*
 * (C) 2004 by Argonne National Laboratory.
 * See COPYRIGHT in top-level directory.
 */
#include "mpi.h"
#include <iostream>
#include <math.h>
using namespace std;
double f(double);
double f(double a)
{
 return (4.0 / (1.0 + a*a));
}
int main(int argc,char **argv)
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 double startwtime = 0.0, endwtime;
 int namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];

 MPI::Init(argc,argv);
 numprocs = MPI::COMM_WORLD.Get_size();
 myid = MPI::COMM_WORLD.Get_rank();
 MPI::Get_processor_name(processor_name,namelen);

 cout << "Process " << myid << " of " << numprocs << " is on " <<
processor_name << endl;

 n = 10000; /* default # of rectangles */
 if (myid == 0)

startwtime = MPI::Wtime();

 MPI::COMM_WORLD.Bcast(&n, 1, MPI_INT, 0);

 h = 1.0 / (double) n;
 sum = 0.0;
 /* A slightly better approach starts from large i and works back */
 for (i = myid + 1; i <= n; i += numprocs)
 {

x = h * ((double)i - 0.5);
sum += f(x);

 }
 mypi = h * sum;

 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0);

52

 if (myid == 0) {
endwtime = MPI::Wtime();
cout << "pi is approximately " << pi << " Error is " <<
 fabs(pi - PI25DT) << endl;
cout << "wall clock time = " << endwtime-startwtime << endl;

 }

 MPI::Finalize();
 return 0;
}

Appendix O: Mock Set-up Example Code

This is the Driver
#include "Object.h"
#include <iostream>
#include <string>
#include <fstream>
#include <cstdlib>
using namespace std;
int main(int argc,char **argv)
{
////Create objects////////

Object zero("bailey","kelly",1234567);
Object one("olen", "davis", 2345678);
Object two("kari","macklin",3456789);
Object three("shaun","fischer",4567891);
Object four("justin","cirbo",5678945);
Object five("Mr","Bean",6789123);
Object six("Dr","Jekel",7894561);
Object seven("Mr","Hyde",9874563);

/////////MPI Implementation//////////

int rank, size;
char processor_name[MPI_MAX_PROCESSOR_NAME];
int namelen;
double startwtime = 0.0, endwtime;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI::Get_processor_name(processor_name,namelen);

startwtime = MPI::Wtime();

if(rank==0)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<zero.get_First()<<" "<<zero.get_Last()<<" "<<zero.get_Phone()<<endl;

}

if(rank==1)

53

{
cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<one.get_First()<<" "<<one.get_Last()<<" "<<one.get_Phone()<<endl;

}

if(rank==2)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<two.get_First()<<" "<<two.get_Last()<<" "<<two.get_Phone()<<endl;

}

if(rank==3)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<three.get_First()<<" "<<three.get_Last()<<" "<<three.get_Phone()<<endl;

}

if(rank==4)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<four.get_First()<<" "<<four.get_Last()<<" "<<four.get_Phone()<<endl;

}

if(rank==5)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<five.get_First()<<" "<<five.get_Last()<<" "<<five.get_Phone()<<endl;

}

if(rank==6)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<six.get_First()<<" "<<six.get_Last()<<" "<<six.get_Phone()<<endl;

}

if(rank==7)
{

cout<<"I am process "<<rank<<" of"<<size<<endl;
cout<<"I am running on "<<processor_name<<endl;
cout<<"This is my information: "<<endl;
cout<<seven.get_First()<<" "<<seven.get_Last()<<" "<<seven.get_Phone()<<endl;

}

54

if(rank>=8)
{

cout<<"There are no more objects"<<endl;
cout<<"But this process is running on "<<processor_name<<endl;

}

if (rank== 0)
{
endwtime = MPI::Wtime();
cout <<"This is how long I've been talking for = " << endwtime-startwtime << endl;
cout<<"Goodbye"<<endl;

 }

MPI_Finalize();
 return 0;
system("Pause");

}// End Main

This is the Object.h
#pragma once
#include <mpi.h>
#include <iostream>
#include <string>
using namespace std;
class Object
{
public:

Object(void); //Default constructor
Object(string first, string last, int phone); //3 Parameter constructor
string get_First() const {return First;} //First name accessor
string get_Last() const {return Last;} //Last name accessor
int get_Phone() const {return Phone;} //Phone number accessor
void set_First(string first); //First name modifier
void set_Last(string last); //Last name modifier
void set_Phone(int phone); //Phone number modifier
~Object(void); //Destructor

private:
string First;
string Last;
int Phone;

};
This is the Object.cpp
#include "Object.h"
#include <string>
Object::Object(void)
{

First="";
Last="";
Phone=3333333;

}
Object::Object(string first, string last, int phone)

55

{
First=first;
Last=last;
Phone=phone;

}
void Object::set_First(string first)
{

First=first;
}

void Object::set_Last(string last)
{

Last=last;
}

void Object::set_Phone(int phone)
{

Phone=phone;
}

Object::~Object(void)
{
}

Appendix P HTTP Request Code

#include <cstdlib>
#include <iostream>

using namespace std;

/*
 * Notes:
 * This source demonstrates sending HTTP POST request to webserver from C++
 * This uses sockets hence can be compiled on Linux, UNIX, Win
 */

//#define LINUX_OS
 #define WIN_OS
#define _DEBUG_PRINT(X) X

//For commn
#include <iostream>
#include <string>
#include <stdlib.h>
#include <assert.h>

#ifdef LINUX_OS
 #include <netdb.h>
#endif

#ifdef WIN_OS
 #include <Winsock2.h>
#endif

56

#define SEND_RQ(MSG) /*cout<<send_str;*/ send(sock,MSG,strlen(MSG),0);

using namespace std;
//<exe> hostname api parameters

int main()
{

//Do request here
}//end main
int request (char* hostname, char* api, char* parameters, string& message)
{

#ifdef WIN_OS
{

WSADATA WsaData;
WSAStartup (0x0101, &WsaData);

}
#endif

 sockaddr_in sin;
 int sock = socket (AF_INET, SOCK_STREAM, 0);
 if (sock == -1) {

return -100;
}

 sin.sin_family = AF_INET;
 sin.sin_port = htons((unsigned short)80);

 struct hostent * host_addr = gethostbyname(hostname);
 if(host_addr==NULL) {
 _DEBUG_PRINT(cout<<"Unable to locate host"<<endl);
 return -103;
 }
 sin.sin_addr.s_addr = *((int*)*host_addr->h_addr_list) ;
 _DEBUG_PRINT(cout<<"Port :"<<sin.sin_port<<", Address : "<< sin.sin_addr.s_addr<<endl);

 if(connect (sock,(const struct sockaddr *)&sin, sizeof(sockaddr_in)) == -1) {
 _DEBUG_PRINT(cout<<"connect failed"<<endl) ;
 return -101;
 }

 string send_str;

 SEND_RQ("GET ");
 SEND_RQ(api);
 SEND_RQ(" HTTP/1.0\r\n");
 SEND_RQ("Accept: */*\r\n");
 SEND_RQ("User-Agent: Mozilla/4.0\r\n");

 char content_header[100];
 sprintf(content_header,"Content-Length: %d\r\n",strlen(parameters));
 SEND_RQ(content_header);
 SEND_RQ("Accept-Language: en-us\r\n");
 SEND_RQ("Accept-Encoding: gzip, deflate\r\n");

57

 SEND_RQ("Host: ");
 SEND_RQ("hostname");
 SEND_RQ("\r\n");
 SEND_RQ("Content-Type: application/x-www-form-urlencoded\r\n");

 //If you need to send a basic authorization
 //string Auth = "username:password";
 //Figureout a way to encode test into base64 !
 //string AuthInfo = base64_encode(reinterpret_cast<const unsigned char*>(Auth.c_str()),Auth.length());
 //string sPassReq = "Authorization: Basic " + AuthInfo;
 //SEND_RQ(sPassReq.c_str());

 SEND_RQ("\r\n");
 SEND_RQ("\r\n");
 SEND_RQ(parameters);
 SEND_RQ("\r\n");

 _DEBUG_PRINT(cout<<"####HEADER####"<<endl);
 char c1[1];
 int l,line_length;
 bool loop = true;
 bool bHeader = false;

 while(loop) {
 l = recv(sock, c1, 1, 0);
 if(l<0) loop = false;
 if(c1[0]=='\n') {
 if(line_length == 0) loop = false;

 line_length = 0;
 if(message.find("200") != string::npos)

 bHeader = true;

 }
 else if(c1[0]!='\r') line_length++;
 _DEBUG_PRINT(cout<<c1[0]);
 message += c1[0];
 }

 message="";
 if(bHeader) {

 _DEBUG_PRINT(cout<<"####BODY####"<<endl) ;
 char p[1024];
 while((l = recv(sock,p,1023,0)) > 0) {
 _DEBUG_PRINT(cout.write(p,l)) ;

 p[l] = '\0';
 message += p;

 }

 _DEBUG_PRINT(cout << message.c_str());
 } else {

 return -102;
 }

58

 #ifdef WIN_OS
 WSACleanup();
 #endif

 return 0;
}

Appendix Q Unique URL Retriever

using Microsoft.Win32;
using System;
using System.Collections.Generic;
using System.Text;

namespace GDRegistryHacking
{
 class Program
 {
 static void Main(string[] args)
 {
 object searchUrl =
Registry.CurrentUser.OpenSubKey("Software").OpenSubKey("Google").OpenSubKey("Google
Desktop").OpenSubKey("API").GetValue("search_url");
 Console.WriteLine(searchUrl.ToString());
 Console.ReadLine();
 }
 }
}

Appendix R: Unique URLs for HTTP Request
Note: http://127.0.0.1:4664/search&s=-_-XbDScjJXEisMq4lin8li_nm0?q=
Octave:http://127.0.0.1:4664/search&s=NJbUo9ngnkwZpq7eaLfapIZXeEI?q=
Pitch: http://127.0.0.1:4664/search&s=uap4fzzZLwrVoNM1wkBiIczQ4J0?q=

Rhythm: http://127.0.0.1:4664/search&s=93MNnKlGmD-9nDYMBZy-Rq5NMQ4?q=

Rondo: http://127.0.0.1:4664/search&s=pjO6m6g-oSZ1_7y8JkYpgDEOdSI?q=

Minor: http://127.0.0.1:4664/search&s=fX15IYYHSWIlpcqxNAPApkQgHz0?q=

Meter: http://127.0.0.1:4664/search&s=Jg5F6bH0LtFGroJ12hzv4XJZzlU?q=

Melody: http://127.0.0.1:4664/search&s=EPaDVCEHMbuaA2nJst98PHtuFkc?q=

Appendix S: MPICH/Google Desktop Integration code
#include "mpi.h"
#include <iostream>

#import "ParallelSearchComponents.tlb" named_guids
#include <string>

using namespace std;

void Query();

59

int main(int argc,char **argv)
{

 /////////MPI Implementation//////////
 int rank, size;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int namelen;
 double startwtime = 0.0, endwtime;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI::Get_processor_name(processor_name,namelen);

 startwtime = MPI::Wtime();

 if(rank==0)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==1)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==2)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==3)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==4)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

60

 Query();
 }

 if(rank==5)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==6)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank==7)
 {
 cout<<"I am process "<<rank<<" of"<<size<<endl;
 cout<<"I am running on "<<processor_name<<endl;
 cout<<"This is my information: "<<endl;

 Query();
 }

 if(rank>=8)
 {
 cout<<"There are no more objects"<<endl;

 Query();
 }

 if (rank== 0)
 {
 endwtime = MPI::Wtime();
 cout <<"This is how long I've been talking for = " << endwtime-startwtime << endl;
 cout<<"Goodbye"<<endl;
 }

 MPI_Finalize();

 system("Pause");
 return 0;

 system("Pause");

}// End Main

void Query()
{
 HRESULT hRes = S_OK;
 CoInitialize(NULL);

61

 // Declare the reference to the Searcher plugin
 ParallelSearchComponents::ISearcher *pManagedInterface = NULL;

 // Get an instance of the Searcher plugin (CLSID_Searcher), which implements the ISearcher interface (IID_ISearcher)
 hRes = CoCreateInstance(ParallelSearchComponents::CLSID_Searcher, NULL, CLSCTX_INPROC_SERVER,
 ParallelSearchComponents::IID_ISearcher, reinterpret_cast<void**> (&pManagedInterface));

 if (S_OK == hRes) // If the instance was got
 {
 BSTR query = L"12001";
 // Call public methods of the Searcher class (defined by the ISearcher interface)
 BSTR results = pManagedInterface->StringResultsSearchSimple(query);
 long resultCount = pManagedInterface->ResultCountSearchSimple(query);
 printf("The string results are '%s'\r\n",results); // Doesn’t work because of BSTR
 printf("The number of results is %d\r\n", resultCount);
 pManagedInterface->Release();

 system("pause");
 }
 else
 {
 cout << "HRESULT: " << hRes << endl;
 system("pause");
 }

 CoUninitialize (); //DeInitialize all COM Components
}

