

TinyBrainz

CSM3 WSN Project

Client Report

Brandon Ardiente, Steven Arth, Claire DuPont

Field Session

June 21, 2007

 1

Table of Contents

1 - Abstract... 2
2 - Introduction.. 2
3 - Design .. 3

3.1 - Requirements .. 3
3.2 - Activities ... 5
3.3 - HTML Pages... 5
3.4 - Wireless Sensor Network.. 5

4 - Implementation .. 6
4.1 - Hardware Recommendation.. 6
4.2 - Mote Usability and Firmware ... 6
4.3 - Sensor Data Display Method .. 7
4.4 - Identifying Sensor Reads and Sensor Displays .. 8
4.5 - Preserving Existing XMesh Functionality .. 9

5 - Results ... 9
6 - Conclusions and Future Directions.. 10
7 - Glossary... 11
Appendix A .. 13
Appendix B... 15
Appendix C .. 20
Appendix D .. 25
Appendix E... 27
Appendix F... 30
Appendix G .. 33
Appendix H .. 34

 2

1 - Abstract

There is a gross under-representation of minorities and females in the Information Technology
and science, technology, engineering and math (STEM) fields. One approach suggested to
remedy this situation is to develop hands-on activities where students can perform their own
experiments to aid in the learning process. Information Technology Experiences for Students and
Teachers (ITEST)1 proposes to meet this need by designing and implementing a year-round
informal education program through the use of wireless sensor networks (WSNs).

The goals of the ITEST program are as follows:

1. Develop and implement an informal year-round intervention based on WSN hardware,
software and communications that is team-based, engaging to students, and related to students'
daily environments.

2. Improve student attitudes (e.g., perceptions of, value of, self-confidence in, etc.) regarding
learning, school, IT, and STEM.

3. Improve student attitudes towards pursuing a future in IT and/or STEM.

4. Improve student performance in IT and STEM related areas.

Our Role:

We are using a collection of wireless, portable sensor nodes that measure environmental and
physical parameters, such as temperature and barometric pressure, to create a wireless sensor
network. This network is used to design activities that can be performed easily by upper
elementary and middle school students during allotted class times and support information being
taught in a normal classroom setting.

2 - Introduction

The goal of this project is to create a curriculum with math and/or science related activities for
elementary and middle school students with the use of wireless sensor networks (WSNs). These
activities should increase the interest of students in math and science and meet Colorado State
Science and/or Math Standards. Relevant client application development, wireless sensor
network (WSN) hardware, and appropriate documentation should be included. The curriculum
should be implemented by a teacher with relative ease with help from a Colorado School of
Mines representative familiar with setup and operation of the WSN. It is desired that the
education and complexity level of the activities be adjustable for students in grades 3 through 8.
We are assuming that cost is not a major issue since schools will not be purchasing the sensor
nodes. Rather, grant money will likely fund the project, and Colorado School of Mines will be
responsible for deploying the equipment as needed.

 3

3 - Design

We have been given the opportunity to use four MPR400CB radio boards (see Figure 1), three
MTS310CA sensor boards (see Figure 1), and one MIB520CB interface board to work with for
this project. Since we had four radio boards, one was used as part of the base station and the
other three were nodes. Although some of the equipment is slightly older than the motes (the
radio board and sensor board are called a mote when put together) we had originally researched,
the MTS310CAs have the sensing capabilities that we plan to use for the middle school activities
and are capable of using current software. This mote contains a thermistor, 2-axis accelerometer,
2-axis magnetometer, light sensor, buzzer, three LEDs, and microphone. The activities we have
chosen will use the thermistor, microphone, 2-axis accelerometer, light sensor, LEDs and buzzer.

Figure 1 – This is an image of the motes we used in our project. They each consist of a power

supply, the MICA2 radio board, and the MTS310CA Sensor Board.

3.1 - Requirements

 3.1.1 Functional Specifications

1) Design a system of nodes that are able to relay information between each other.
This system needs to be able to transmit data to the base computer. The base will
use this information to display data for students to use/interpret for their activity
(see Figure 2).

2) Create classroom activities that meet Colorado Math and/or Science Standards.

3) There is the possibility of allowing students to view and slightly modify code to
gain a better understanding of how the sensors work.

 4

Figure 2 – This is the overall layout of the WSN. Since the motes were manufactured

by Crossbow, they come with a modified version of TinyOS called
MoteWorks. When in place, the motes relay information off of each other
until the data is finally sent to the interface board. The interface board
then processes the data and transmits the data to the base computer where
we can utilize Crossbow’s MoteView software to present the information
in a form useful for students and teachers.

3.1.2 Nonfunctional Specifications

1) Since wireless sensors have a lot of versatility, both indoor and outdoor activities
can be created for students. These activities can be done both on and off of
school premises.

2) The activities will be specifically designed with upper elementary and middle
school students in mind. In light of this, the need for programming skills will not
be emphasized. However, setup of a WSN will not necessarily be possible for the
average teacher. A CSM student/representative will be needed on-site to
configure everything and explain the basic operation of the equipment.

3) No specific requirements have been set as far as quality assurance, but in order for
this project to be feasible it will need to be reliable and have little to no
maintenance. Since it is unlikely a school district will be able to afford a WSN
setup, the burden will be placed elsewhere (most likely funded by grants). Once
the initial setup has been purchased it may be difficult to secure funds for
replacement equipment.

 5

4) Documentation is crucial in this project. Teachers who are considering
implementing these projects as part of their curriculum need to fully understand
what is involved and how it works. Make all documentation available on the
Toilers website for easy reference2 and in a series of web pages specifically
designed for this project.

5) The WSN must be as simple and flexible as possible. Make the completed system

capable of adding new nodes of various types that will be compatible with the
original hardware. This will reduce the future costs that will be incurred with the
system. Should the project commit to one brand of WSN technology, a
consequence of this requirement will be following that brand’s upgrade and
compatibility paths.

6) Since the motes run on nesC (an extension of the C programming language), we

will need to be able to program efficiently in this language.

3.2 - Activities

We have designed five activities for students. The first allows students to take a mote home with
them and collect temperature data outside of their homes to be analyzed the following day when
they return to school (see Appendix A). Another activity measures acceleration of toy cars on a
ramp taking into account different factors, such as the height of the ramp, the material covering
the ramp, and the mass of the car (see Appendix B). The third activity will require students to
bury motes in environmentally-diverse locations and draw conclusions to a temperature-related
problem based on the data collected (see Appendix C). The fourth activity will use the
acceleration sensor to create a step counter (see Appendix D). Lastly, the sound sensor will be
used to demonstrate the changes in decibel levels from various sounds in a classroom or other
environments (see Appendix E).

Each of these activities has been specifically designed to utilize the capabilities of the sensing
boards while meeting several math and science standards as specified by the state.

3.3 - HTML Pages

We have created a set of basic HTML pages designed for teachers to gain a better understanding
of the activities. These pages include questions the teachers will introduce to students, the
purpose of the activities, and step-by-step procedures for implementation. The HTML pages do
not address the programming aspects of the activities.

3.4 - Wireless Sensor Network

The wireless sensor network formed by our Crossbow MICA2 motes runs on Crossbow’s
MoteWorks, a modification of the open-source TinyOS. TinyOS is an embedded operating
system written in the nesC programming language as a set of cooperating tasks and processes.

 6

MoteWorks itself is a software suite consisting of firmware, programming tools and maintenance
utilities that allow us to easily develop applications for and deploy the motes.

The MoteWorks mote firmware uses the XMesh networking library, an extension of the TinyOS
MintRoute library. Crossbow claims XMesh achieves 95-99.9% message delivery reliability
versus MintRoute’s 65-70%3. Furthermore, the firmware forms an ad hoc wireless network
within seconds, can repair the network when nodes go offline or signal quality decays, and can
actively run necessary network operations from each mote running exclusively on battery power.
An ad hoc wireless network is a computer network in which the communication links are
wireless because each node is willing to forward data for other nodes. XMesh’s functionality is
entirely out of the box; we will not have to modify any code for the purposes of our project.

The MoteWorks suite comes with a Windows-based development environment for viewing,
editing, compiling and downloading code. We will use this environment to extend the
functionality of our motes. Currently, our motes require the use of a base station (a PC) in order
to obtain the various sensor readings. We have extended the mote firmware to provide the user
with audiovisual notifications so that the user may use the mote and draw important information
from the mote without having to use the base station software.

The base station software consists of Crossbow’s MoteView software. MoteView provides a
visual representation of network topology, sensor readings over time, and network link quality.
Our activities will use MoteView’s existing functionality, and teachers will have exclusive
access to the software.

4 - Implementation

4.1 - Hardware Recommendation

We researched several current off the shelf wireless sensor node devices for our project. After
careful consideration of ease of development and ease of deployment, we determined that the
Moteiv Tmote Invent wireless sensor nodes would be the best hardware to use with our project.
Full documentation of our hardware recommendation may be found in Appendix F. However,
our clients requested that we use hardware that they already owned, so we changed our design
approach to accommodate Crossbow MICA2 motes instead of the Tmote Invent motes.

4.2 - Mote Usability and Firmware

For our activities, our clients suggested different mote usage scenarios. One such scenario
involved students being able to obtain readings from their motes without the use of a base
station, a PC and client-side software. This scenario required the mote to relay relevant sensor
data to a user directly, without the use of the wireless sensor network. As a result, we had to
devise a method by which our MICA2 motes, with only 3 LEDs and a buzzer, could accurately
relay sensor data such as temperature, acceleration, light intensity, etc.

 7

Another usage scenario involved students being able to directly control when a mote would take
a given reading. Our original hardware recommendation, the Moteiv Tmote Invent, came
equipped with a programmable user-input button which we had originally intended on
programming to allow the user to control when the mote took a sensor reading. However, due to
our hardware change to the MICA2 mote, we were not able to utilize any sort of user input in
regards to taking a sensor reading. As such, we had to program the motes to take readings at
specified intervals, and to devise a method by which the mote users would be able to identify
when a reading has been taken and when that reading is being displayed.

Lastly, we had to implement our display design into the existing XMesh networking
functionality so that we may still monitor our motes using Crossbow’s MoteView software.

4.3 - Sensor Data Display Method

Our original design involved the use of the 3 LEDs as place value markers and the buzzer as a
counter. The yellow LED served as the hundreds place, the green LED served as the tens place,
and the red LED served as the ones place; for a given number, the place value would remain lit
while the buzzer sounded off for each unit in that place value. For example, to relay the number
123, the yellow LED would light up and the buzzer would buzz once, then the green LED would
light up and the buzzer would buzz twice, and finally the red LED would light up and the buzzer
would buzz three times. (See Appendix G for example)

After implementing our original design, we discovered that the buzzer equipped on the MICA2
mote was obnoxiously loud and high-pitched, and that a group of MICA2s sounding the buzzer
sounded almost like a fire alarm. To save the sanity of the teachers who will be using our motes
(and to save our own), we made modifications to our sensor data display method. The new
display method uses the same LED and place value relationships as the previous method, but the
new method blinks each place value rather than buzz the value. For example, to relay the
number 123, our motes will now blink the yellow LED once, the green LED twice, and the red
LED three times. Once we completed and tested this second design, we decided that it would
become the standard by which our motes will display sensor data to the user without using a PC.

Due to the given limitations of our mote hardware, we decided that the mote firmware should
only be able to display one type of sensor data reading in a given program. We wrote our code
so that, while every available sensor is read during a reading, only one type of reading is actually
sent to the LEDs as flashes. For example, if a student is currently using the mote to take
temperature readings via the LED display and wishes to switch to taking acceleration readings,
the mote must be reprogrammed to the acceleration-specific code.

In our temperature display implementation, we found that, in order for our temperature display to
be useful, we had to convert the sensor’s default analog to digital conversion (ADC) values to
degrees Celsius values before displaying the result on the mote’s LEDs. The MTS310 User’s
Manual provided the following equation for the conversion4:

 8

1/T(K) = a + b × ln(R
thr
) + c × [ln(R

thr
)]
3

where:

R
thr
= R1(ADC_FS-ADC)/ADC

a = 0.001010024

b = 0.000242127

c = 0.000000146

R1 = 10 kΩ

ADC_FS = 1023, and

ADC = output value from Mote’s ADC measurement.

 T(C) = T(K) – 273

We had difficulty implementing this code into our motes because we could not figure out how to
perform power and logarithm functions from within nesC. We thought that we had to somehow
include the C-standard Math.h file so that we could use power and logarithm functions.
However, we later learned that the Math.h file is already included in our TinyOS distribution by
default; thus, we simply had to properly call the power function and the logarithm function in
order to perform our conversion. (Refer to our code attachment in Appendix H)

4.4 - Identifying Sensor Reads and Sensor Displays

The MICA2 mote’s lack of a user input button forced us to write firmware that took sensor
readings at specified time intervals while displaying the reading results after each interval. In
order for our display to be useful to students, we needed a way for students to know exactly
when the mote is taking a reading and when the mote is displaying the value via the LEDs.

TinyOS, being an event-driven operating system, uses a timer interface that will fire a timer
event once every specified time interval. We decided to abstract this interface to “ticks”. A
“tick” is the length of time between two successive timer events; with the aid of the yellow LED,
we further defined a tick as the yellow LED flashing on (after one timer event) and turning off
(after the second timer event, hence the two successive timer events). An unsigned integer at the
beginning of our code defines the number of ticks that the firmware must cycle through before it
attempts to take a sensor reading. We wrote code to sound off the buzzer during the last three
ticks before a reading is taken to help users anticipate the start of the sensor reading. The result
is a “3…2…1” countdown effect using the buzzer. Once the firmware cycles through the
specified number of ticks, all three LEDs light up to signify that the mote is currently taking a
sensor reading. The mote packages the readings and sends the readings across the XMesh
network, and upon completing this task, the mote beeps and all of the LEDs turn off. As soon as
the LEDs turn off, the mote displays one of the sensor data readings, based on the current code
(see Sensor Data Display Method on previous page).

 9

4.5 - Preserving Existing XMesh Functionality

XMesh is Crossbow’s customized implementation of TinyOS’ MintRoute networking library. In
order to utilize Crossbow’s powerful MoteView client-side application, our motes must
implement XMesh for wireless network communications. An XMesh library exists such that we
may import and use it in our firmware. However, in the interest of time, we decided to take
existing XMesh-enabled firmware and add our custom sensor display method to the existing
code.

Crossbow’s distribution of MoteWorks comes with source code for the default, XMesh-enabled
applications that interface well with MoteView. In order to merge our sensor data display
functionality with the existing XMesh code, we had to utilize the existing code’s timer. We
modified the timer event handler code to account for a “tick” countdown (a tick is equal to one
second), our sensor readings and our LED display. By using Crossbow’s existing code, we
saved ourselves the trouble of learning how to interface with Crossbow’s networking solution
and instead were able to focus on interfacing with sensor data and with LEDs.

5 - Results

Our firmware implementation relies heavily on Crossbow’s existing code and libraries
(particularly XMesh) since we wrote our display code on top of the existing code. Furthermore,
our code specifically interfaces with the MTS310CA sensor board. As a result, our code is very
platform-specific and is almost exclusively geared toward Crossbow MICA2 motes equipped
with an MTS310CA sensor board.

Our number display mechanism is fairly generic and should be able to be ported to any TinyOS-
enabled mote with a 3 LED display. However, because of our heavy reliance on existing XMesh
code (and its GUI, MoteView), changing platforms from the Crossbow MICA2 to a different
platform would require a complete rewrite of the networking code, as well as an understanding
of a completely different client-side application, since MoteView is exclusive to Crossbow.

Maintaining use of our existing firmware locks the project’s future hardware to Crossbow’s
MICA2 upgrade paths. Rewriting the networking code and client-side application interface in
order to accommodate a different platform would have magnitude enough to warrant a project of
its own. On the other side, our activities are generic enough that they may be used with any
wireless sensor node device that utilizes the sensors that our activities call for; the only additions
necessary would be programming the on-mote display and programming the wireless data
transmission.

Our clients requested that we demonstrate one of our activities with a group of students. We
chose “A Home for Kermy” as our demonstration activity; therefore, we fully implemented the
display and networking firmware to work with temperature readings. Our firmware successfully
read temperatures, sent the data back to the base station where the values could be read via
MoteView, and displayed the data to the user (in Celsius units) via the LED display.

 10

Since this project was completed after the normal school year was over, we tested the activity on
twelve accelerated students studying 3rd and 4th grade material (note that “A Home for Kermy”
is designed for 5th to 6th grade students, but material was omitted or altered to accommodate this
grade level). Before we started the activity we tested the students on what they already knew
about reading graphs, finding averages, and doing fraction multiplication with calculators (we
were informed prior to the activity that the students had not learned fraction multiplication yet).
All of the students could do the fraction multiplication with a calculator, and half of the students
could also interpret readings on a graph. The students seemed really excited about the topic and
the background story; therefore, trying to include a game or fun character was a good addition to
the activity. We felt we could have given a better introduction to the activity before we started
gathering data. One thing we specifically needed to talk about was how to calculate the average
of three numbers. This information could be added to the Teacher’s Packet.

The students had difficulty focusing at times and were rowdier than we expected. Performing
the activities in groups smaller than four could have helped solve this problem, but we only had
three motes to use. Thus, groups had to be larger than the two or three students the activity
initially called for. We also realized that the motes needed to be programmed to take readings
more frequently than once per minute. This would have saved some time and kept the students
more focused. Students at the younger elementary age level have a short attention span, so
making them wait for a minute between readings made the activity more difficult.

We had a few firmware issues in which the LED display would display an incorrect value, but
these issues were temporarily remedied by turning off the mote and then turning it back on. We
could not determine the cause of these errors; the motes would take 3 or so proper temperatures
then return false values. We had a few hardware issues as well. Since our activity required
students to bury our motes and since we did not have adequate housing for our motes, our motes
suffered broken wires and disconnected boards that resulted in adverse results in our activity.

However, despite our software and hardware issues, our demonstration received positive acclaim
from our test group when we surveyed them at the end of the activity. We also found that the
majority of the students did not find the activity to be too difficult and the instructions were very
clear. Most said the motes were necessary and very easy to use, and that the data from the motes
was not difficult to interpret. All of the students found the activity fun and interesting, which
positively addressed one of our biggest concerns.

6 - Conclusions and Future Directions

In the future we hope that other people will be able to focus on creating more activities for
students since only minor modifications will be needed to adapt the software we create for new
activities. There is the possibility of receiving funding for this project so it can be more widely
used and upgraded as well. One of the limitations to future contributions to this project deals
with hardware compatibility with other mote brands; if motes other than Crossbow are purchased
the programming may need modifications. However, without having another brand of motes to
investigate this issue it is unclear how extensive these modifications may be.

 11

7 - Glossary

ADC – analog to digital converter
Ad hoc wireless network – a computer network in which the communication links are wireless
because each node is willing to forward data for other nodes
Client-side – refers to operations that are performed by the client in a client-server relationship
(a client is typically a computer application, such as a web browser, that runs on a user's local
computer or workstation and connects to a server as necessary)
Event-driven programming – the flow of the program is determined by user actions (mouse
clicks, key presses) or messages from other programs
Firmware – software that is embedded in a hardware device
Interface board – the main component of the base station, used to program and communicate
with the motes
IT – Information Technology
ITEST – Information Technology Experiences for Students and Teachers
LED – light emitting diode
MICA2 – a third generation mote module used for enabling low-power, wireless sensor
networks
MintRoute – the standard routing protocol of TinyOS
Mote – electronic communication devices that make up a wireless sensor network
MoteView – an application that interfaces between a user and a deployed network of wireless
sensors
MoteWorks – Crossbow’s open, integrated, standards-based platform for the development of
wireless sensor network OEM devices and systems
nesC – a programming language built as an extension to the C programming language with
components "wired" together to run applications on TinyOS
Node – a device connected to a network (see “Mote”)
Radio Board – Sometimes called the “mote” because it is the brains of the mote component.
The radio board is responsible for collecting data from the sensor board, transmitting data, and
storing and running the code that is to be executed.
STEM – science, technology, engineering, and math
TinyOS – an embedded operating system written in the nesC programming language as a set of
cooperating tasks and processes
WSN – Wireless Sensor Network
XMesh – (Crossbow’s routing protocol) – creates a network consisting of nodes (Motes) that
wirelessly communicate to each other and are capable of hopping radio messages to a base
station where they are passed to a PC or other client

References:

1) http://www2.edc.org/itestlrc/ - ITEST Homepage

2) http://toilers.mines.edu/Toilers/MiddleSchoolWSNProject - Middle School WSN Project

Homepage

 12

3) http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MoteWorks_OEM_Edit
ion.pdf - MoteWorks OEM Edition Software Platform Description

4) http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf -

Crossbow MPR-MIB Users Manual

 13

Appendix A

Temperature Activity

Grades: 3rd and 4th

Science Standards:

STANDARD 4:
Earth and Space Science: Students know and understand the processes and interactions of
Earth’s systems and the structure and dynamics of Earth and other objects in space. (Focus:
Geology, Meteorology, Astronomy, Oceanography)

4.2 Students know and understand the general characteristics of the atmosphere and
fundamental processes of weather.

5) recognizing that the Sun is a principal source of Earth’s heat and light
6) describing existing weather conditions by collecting and recording weather data (for

example, temperature, precipitation, amount of cloud cover)

Math Standards:

STANDARD 6:
Students link concepts and procedures as they develop and use computational techniques,
including estimation, mental arithmetic, paper-and-pencil, calculators, and computers, in
problem-solving situations and communicate the reasoning used in solving these problems.

• demonstrate conceptual meanings for the four basic arithmetic operations of addition,
subtraction, multiplication, and division

• add and subtract commonly-used fractions and decimals using physical models (for
example, 1/3, 3/4, 0.5, 0.75)

• demonstrate fluency with basic addition, subtraction, multiplication, and division facts
without the use of a calculator

Key Question: How much does the sun affect temperature?

Engage: Below are a few questions to ask students prior to starting the activities:

• How many miles away from the earth is the sun?
Minimum distance = 146 million km (91 million miles)

Maximum distance = 152 million km (94.5 million miles)

• What is the temperature like on the sun?
Temperature at core = 14 million degrees C (22.5 million degrees F)

Temperature at surface = 5,500 degrees C (9,932 degrees F)

Temperature of sunspots = 4,000 degrees C (7,232 degrees F)

• Why is the temperature different at the equator than at the poles?

 14

Hypothesize: What consecutive temperature readings will give the largest change in
temperature (See Readings 1-4 below)?

Part 1: Students each take a node home to measure the temperature around their homes. The
nodes will be programmed to take outdoor temperatures at approximately the following times:

Reading 1. when students get home from school
Reading 2. when the sun goes down (right after sunset)
Reading 3. before students go to bed (after the sun has been down for several

 hours)
Reading 4. in the morning before students return to school

If time and weather permit, take the temperature at the same times during a cloudy day when the
sun is not out at all. In class the following day students will calculate the difference in the
temperature data they gathered for each day.

Calculate: Sunny Day Cloudy Day
 (if applicable)

Reading 1 – Reading 2 = __________ __________
Reading 2 – Reading 3 = __________ __________
Reading 3 – Reading 4 = __________ __________
Reading 1 – Reading 4 = __________ __________
Reading 1 – Reading 3 = __________ __________
Reading 2 – Reading 4 = __________ __________

Questions:
• Analyzing only the readings from the sunny day, which set of consecutive readings

(Readings 1-2, Readings 2-3, or Readings 3-4), if any, had the greatest change in
temperature? How did this result compare to your hypothesis? Give reasons why you
think this result occurred.

• If measurements were able to be taken on a sunny and cloudy day, how does the
difference in the temperature readings on the cloudy day compare to the difference in
temperature readings on the sunny day?

• Which day had smaller temperature differences? Explain why you think this happened.

Part 2: Students can work in small groups for this activity. Give each group two sensors.
Students place a node in the window of the room in the sun and another node on the other side of
the room in the shade. Take several temperature readings from both nodes.

Questions: Did one side of the room give warmer temperature readings? If so, tell which side
and why you think this higher temperature occurred.

Analyze: What do these two activities say about how the sun affects temperature?

References:
http://www.windows.ucar.edu/tour/link=/earth/statistics.html - Windows to the Universe "Earth
Statistics”
http://www.windows.ucar.edu/tour/link=/sun/statistics.html - Windows to the Universe "Sun
Reference Data"

 15

Appendix B

Cars

Age: Grades 6-8

Note: Break off into teams

Materials: toy car, ramp, stopwatch, meter stick, sandpaper and towels to cover the ramps, wax
paper for ramp, masking tape

Learning Goal & Instructional Objectives

Students conduct experiments to collect data (time and distance) for calculating the average
speed of a car as a function of its mass, the height of the ramp, and surface of the ramp.

Instructional Objectives:

1. Calculate the speed of an object using the appropriate formula with data gathered in the
laboratory and printed information.
2. Calculate the acceleration of an object using the appropriate formula with data given in the
problem.

Key Questions: What factors affect the average speed of a small toy car?

How does each factor affect the motion of the car?

State science standards met:

1. Students understand the processes of scientific investigation and design, conduct,
communicate about, and evaluate such investigations.
5. Students know and understand interrelationships among science, technology, and
human activity and how they can affect the world.
6. Students understand that science involves a particular way of knowing and understand
common connections among scientific disciplines.

 16

To the Teacher: Emphasize that acceleration is defined as the change in velocity divided by the
change in time.

Multiple Intelligences:

Logical-Mathematical Intelligence—
Consists of the ability to detect patterns, reason deductively, and think logically. This
intelligence is most often associated with scientific and mathematical thinking.
Linguistic Intelligence—
Involves having a mastery of language. This intelligence includes the ability to effectively
manipulate language to express oneself rhetorically or poetically. It also allows one to use
language as a means to remember information.
Spatial Intelligence—

Gives one the ability to manipulate and create mental images in order to solve problems. This
intelligence is not limited to visual domains. Gardner notes that spatial intelligence is also
formed in blind children.

Engage: You could introduce the ideas of speed and acceleration by discussing major car races.
The following questions may be useful for gaining interest from the class.

1. How fast do you think those cars are going?
2. How can a driver figure out the car’s speed if the car’s speedometer is not working?
3. How does a race car driver change the speed of the car?
4. What is the difference between acceleration and speed?

Each car will need to have a mote attached to its top to measure the acceleration of the car.

Part 1: Height of ramp

1. With the ramp flat on a table or floor, place the back of the car's wheels at one end of the ramp
and measure the distance from the front of the car to the end of the ramp. Record this distance on
the data sheet.
2. Raise the ramp up on the blocks. Measure the height in meters and record on the data sheet.
3. Place the back of the car's wheels at the top end of the ramp.
4. Release the car as you start the stopwatch.
5. Stop timing when the front of the car gets to the bottom of the ramp. Record this time on the
data sheet.
6. Repeat steps 3-5 two more times then calculate the average time and record on the data sheet.
7. Calculate the average speed of your car by using the formula:
 speed = distance/time or s = d/t.
8. Raise one end of the ramp on two blocks and repeat steps 2-7.
9. Raise one end of the ramp on three blocks and repeat steps 2-7.

Part Two: Mass of Car (Height stays the same, mass changes)
1. Raise one end of the ramp on one block. Measure the height in meters and record on the data
sheet.
2. Place the back wheels of the car at the top end of the ramp.

 17

3. Time how long it takes to reach the bottom of the ramp. Record on the data sheet.
4. Repeat steps 2 and 3 two more times then calculate the average time and record on the data
sheet.
5. Add a known mass to the car then repeat steps 2 - 4 recording all measurements on the data
sheet.
6. Add a second known mass to the car then repeat steps 2- 4 recording all measurements on the
data sheet.

Part Three: Surface of the ramp (Height of ramp changes, mass stays the same)
1. Raise one end of the ramp on 2 blocks. Measure the height in meters and record on the data
sheet.
2. Place the back wheels of the car at the top end of the ramp.
3. Time how long it takes to reach the bottom of the ramp. Record on the data sheet.
4. Repeat steps 2 and 3 two more times, then calculate the average time and record on the data
sheet.
5. Cover the surface of the ramp with a higher friction material such as a towel or sandpaper.
6. Repeat steps 2 - 4 two more times then calculate the average time and record on the data sheet.
NOTE: If the car stops before it reaches the bottom of the ramp, measure the distance from the
top of the ramp to the back wheels and record this distance on the data sheet.
7. Cover the ramp with waxed paper.
8. Repeat steps 2 - 4 two more times then calculate the average time and record on the data sheet.

Teachers: Have students record their calculations in a lab journal and communicate their
findings in a class discussion.

Part Four: Calculation, Graphs and Analysis

1. Calculate the average speed for each line in the chart using the formula:
 speed = distance/time or s = d/t.
2. Collect the acceleration values from the base computer and record them in your data sheet.
3. Calculate the average acceleration for each line in the chart using the formula:
 Acceleration = (velocity final – velocity initial)/change in time or a = (vf-vi)/∆t
 (where velocity initial is 0 and velocity final is the speed calculated in part one)
4. Compare your calculated acceleration to the value given by the sensor. How accurate are
 your results? If your results aren’t accurate, why might this be?
5. Graph the data from Parts One, Two, and Three on separate graphs.
6. Identify the manipulated variable and responding variable for Parts One, Two, and Three.
7. Write about your findings in your journal and attach your graphs.

 18

Elaborate: Have students respond to the following questions in their science journals and then
discuss their responses as a team.

Analysis:

1. Why did you do each timing three times, and then average them?

For more accuracy in experiments, measurements should be done more than once.

2. How did the height of the ramp affect the average speed of the car?

The average speed increased because gravity was able to act on the car over a longer vertical

distance.

 19

3. How did the mass of the car affect its average speed?

When the car goes down the ramp, gravity pulls at it with the same acceleration no matter what

its mass is. (Teacher note: Students have problems with this concept because many of them

believe that heavier objects will hit the ground first.) The final velocity of each car no matter

what its mass should be the same velocity. There are some factors that may influence the results.

These include air resistance, wheel traction, and the pressure exerted on the car's axles due to

the increased mass. (Teacher note: A discussion of Galileo before the exploration might help the

students understand this concept.)

4. How did the surface of the ramp affect the average speed of the car?

The more the friction between the ramp and the car wheels, the slower the car will travel. The

wax should make the car go faster. However, if the friction is too little, the wheels will not be

able to have traction with the surface and might go slower. Students must look at their data to

see if that situation happened.

5. What other factors do you believe would affect the average speed of the car? How do you

think that each factor would affect the speed?

This is open to student opinion. They might want to test wheel size (circumference) or change the

front of the car so it has less air resistance. Let them visualize their cars and what they could do

to change the speed.

6. What sources of error were involved in this lab? How do you think each source of error

affected your results?

Timing correctly was probably the area of most error. If the time was wrong, it would definitely

affect the average speed accuracy. To try to overcome this error possibility, three time

measurements were done for each trial.

7. What was the initial velocity of the car at the point that you let the car go?

It was 0 meters per second because the car was not moving until it was released.

8. If a device measured the final velocity of a car as 2 m/s south on the ramp, calculate the

acceleration of the car if it took 4 seconds to reach the bottom of the ramp. Use the

formula:

Teachers: Emphasize the scientific method throughout this project

Reference: http://www.coe.uh.edu/texasipc/units/motion/cars.pdf - Integrated Physics and
Chemistry

 20

Appendix C

A Home for Kermy

A Wireless Sensor Node Activity for 5th and 6th Grade Students

Objectives

1. Students will be able to use wireless sensor nodes to take temperature readings.

2. Students will be able to create and compare bar graphs according to the temperatures.

3. Students will be able to calculate the average of three numbers.

4. Students will be able to apply scientific reasoning and think critically to solve a problem.

Colorado Model Content Standards Met - Science

1. Students understand the processes of scientific investigation and design, conduct,
communicate about, and evaluate such investigations (CMCS Science 1)

a. using appropriate tools, technologies, and measurement units to gather and
organize data;

b. interpreting and evaluating data in order to formulate conclusions;

c. communicating results of their investigations in appropriate ways (for

example, written reports, graphic displays, oral presentations);

d. using metric units in measuring, calculating, and reporting results;

e. giving examples of how collaboration can be useful in solving scientific
problems and sharing findings.

 21

2. Students know and understand common properties, forms, and changes in matter and
energy (CMCS Science 2)

a. Students know that matter has characteristic properties, which are related to its
composition and structure (2.1)

i. examining, describing, comparing, measuring, and classifying objects
based on common physical and chemical properties (for example,

states of matter, mass, volume, electrical charge, temperature, density,

boiling points, pH, magnetism, solubility);

b. Students know that energy appears in different forms, and can move (be
transferred) and change (be transformed) (2.2)

i. measuring quantities associated with energy forms (for example,

temperature, mass, speed, distance, electrical charge, current,

voltage);

c. Students understand that interactions can produce changes in a system,
although the total quantities of matter and energy remain unchanged (2.3)

i. identifying and classifying factors causing change within a system (for

example, force, light heat);

Colorado Model Content Standards Met - Mathematics

1. Students use algebraic methods to explore, model, and describe patterns and functions
involving numbers, shapes, data, and graphs in problem-solving situations and
communicate the reasoning used in solving these problems (CMCS Mathematics 2)

a. represent, describe, and analyze patterns and relationships using tables, graphs,
verbal rules, and standard algebraic notation (2.1)

2. Students use data collection and analysis, statistics, and probability in problem-solving
situations and communicate the reasoning used in solving these problems (CMCS
Mathematics 3)

a. read and construct displays of data using appropriate techniques (for example, line
graphs, circle graphs, scatter plots, box plots, stem-and-leaf plots) and appropriate
technology (3.1)

b. display and use measures of central tendency, such as mean, median, and mode,
and measures of variability, such as range and quartiles (3.2)

c. formulate hypotheses, draw conclusions, and make convincing arguments based
on data analysis (3.4)

 22

Activity Introduction

Kermy is a Kermludgeon from the planet Kermotron. One day, while Kermy was off
exploring the vast expanse of the universe, Kermy’s ship, the K-Pod, was struck by an
asteroid. The asteroid knocked the K-Pod toward a big blue planet, and before he knew
it, Kermy was caught in the planet’s gravitational field and was plummeting towards its
surface.

Kermy crashed landed in a sandbox in what appeared to be a elementary school
playground. His K-Pod completely destroyed, Kermy must now find a place to live until
he can repair his ship.

Problem

Kermludgeons are very sensitive creatures that can only live in soil (much like a plant)
that has the right temperature. Students must investigate the different kinds of soil in the
school playground and to determine where Kermy would be able to live.

Materials

 ## Wireless Sensor Nodes

 ## Clear Sandwich Bags (for protecting the nodes during burial)

 Colored Pencils (for drawing graphs)

 1 Copy of the Student Packet per Student

Setup

Select 5 or more playground locations that students will take temperature readings from.
Try to pick locations that would have large differences in temperature, such a spot that is
always shady or a spot that is always under the sun. Consider taking the students to a
nearby park if the school playground does not offer such temperature-diverse locations.
Note that each location should be relatively dry, as the wireless sensor nodes are not
waterproof and must be buried in order to take proper temperature readings.

Select one or two locations that will serve as Kermy’s desired home. Make sure these
locations are very similar to each other in temperature so that students will be able to
correctly choose the location given a hint (Kermy loves the cold) or a range of
temperatures (Kermy likes temperatures of 50-60F). Consider taking the temperature of
each location before performing the activity to get an idea of the range of temperatures
the students will encounter during the activity.

Develop one or more hints to help students determine which location Kermy might live
in. Consider using a formula that will help the students figure out what Kermy likes (for

 23

example, a simple conversion from Fahrenheit to Celsius). Of course, hints will be based
on which location(s) serve as Kermy’s desired home.

Note that this lab focuses on temperature at a high level; it does not extensively
investigate the quality of different kinds of soil, but simply requests that students perform
qualitative analysis of those soil types. Teachers may introduce soil types to their
students to fit this activity; however, such an introduction is not presented here.

Engage

Begin the activity with a brief overview of Kermy’s problem. Then engage the students
using questions that will hook their interest in temperature and wireless sensor nodes.
Examples of such questions are below.

1. What can affect an object’s temperature?

a. External Sources (the sun)?

b. Physical Properties of the Object (darker color absorbs more heat)?

c. External Objects (heat transfer)?

2. What tools are available for us to take temperature readings of objects?

3. How might technology help us to take temperature readings of objects?

Explore

1. Form teams of 3-4 students (may be driven by how many motes you have)

2. Have teams assign roles to each student in the team:

a. Investigator - The person who uses the sensor

b. Recorder - The person who writes down the data the sensor gives

c. Calculator - The person who calculates values from the data recorded

d. Students will rotate through roles for each type of soil tested.

3. Take each team out to the playground and identify the locations they will test.

4. Give the students a demonstration of the following steps:

a. Using the Sensor – Place the sensor inside of a clear sandwich bag and partially
bury the sensor in the desired location. Turn on the sensor. The sensor will beep
twice immediately before taking a temperature reading. The sensor will then
report the temperature in a series of beeps and LED flashes. Refer to Appendix 1
for information on how to interpret the sensor’s report.

 24

b. Recording the Temperature – Have the students fill out the included data sheet
with the name of the location being tested, three temperatures taken at that
location, and any observations about the location (the ground is under shade most
of the time, there are no plants and the sun shines constantly, etc.)

c. Performing Calculations – Have the students calculate the average of the three
temperatures for each location. Have the students create a bar graph of each
location with a bar for each temperature. Have them draw a dotted line across the
three bars representing the average of the three temperatures.

d. Have each team spend no more than 5 minutes at each location.

5. Once each group has finished collecting data from each location, have each group present
a location and its results (try to do one unique location per group). After the presentation,
have the group post the graph for that location on the blackboard.

6. Compare and contrast the different locations and temperatures with the class. Ask them
questions about why some locations may have such high temperature readings, while
others have low ones. Tie each group’s recorded observations (bare ground, excessive
sunlight, etc.) to the temperatures and ask for the students to make the proper connection.

7. Offer each team a clue about where Kermy might like to live. This can either be direct
(he hates hot places) or indirect (use this equation to find out what Kermy’s desired
average temperature is). Give each team 5 minutes to determine which location(s)
Kermy might like. Consider offering some sort of reward for the teams that successfully
determine a place for Kermy.

Variations

1. Have the students take temperatures at each location during different parts of the day
(morning, lunch time, afternoon). Have the students create a line graph by plotting the
average temperature of each location against the time of day that the reading was taken.
Then have the students determine Kermy’s desired home based on a hint involving time
(for example, Kermy does not like to live in places that change temperature by more than
10 degrees throughout the day).

References

1. Sun Facts and General Sun Information (Regents of the University of California) -
http://cse.ssl.berkeley.edu/segwayed/lessons/startemp/l1.htm (Sun Cartoon Image)

2. Worm Cartoon Image - http://onefoggy.tripod.com/images/worm.jpg

3. Crossbow MIH400 Demonstration -
http://www.xbow.com/Products/Product_images/Wireless_images/comicbook(sound).sw
f (Sensor Node Image)

 25

Appendix D

Step Counter Activity

Age: 6th Grade

Note: It may be helpful to pair students off to save time and help students with data
interpretation.

Objectives:

1. Calculate the number of steps taken based on acceleration data presented on a graph.
2. Calculate velocity based on distance and time.

Questions to consider as you work:

 Does the location of the sensor on the body affect the readings it gives? If
so, in what way does it change the readings?

 Which location of the sensor on the body gave the best readings and why
do you think this is?

Part 1: Choosing a data collection method

1. Have the students attach a mote to their waists.
2. Instruct the students to take several steps, while trying to be consistent in stride length and
speed.
3. Then have them run for about 15 seconds.
4. Now have students attach a mote to their arms.
5. Repeat steps 2 and 3.
6. Have the students attach a mote to their ankles.
7. Repeat steps 2 and 3.

Note: To get an accurate approximation for the number of steps taken with the mote attached to
the ankle, you must multiply the number of steps counted in the graphs by 2. This is because the
mote is only reading half the steps when it is attached to one leg.

 26

Part 2: Let the race begin (make sure you know and record race distance for later

calculations)

1. Line the students up and have them race with motes attached to the body part earlier
determined to be optimal.
2. Keep track of the first 4 people to complete the race.
3. Repeat the first 2 steps a few times, possibly with new racers.

Optional Calculation: Use the following equation to calculate the velocity of the first 4
runners to finish in each race.

 velocity = distance/time

 Explain why this is an average velocity.

Analysis:

1. How do the step counts compare with each runner?

2. Was there any consistency between the number of steps taken and the overall

speed of the runner?

 3. Was your hypothesis correct?

 27

Appendix E

Noise Pollution Activity

For 5th Grade

Science Standards:

STANDARD 1:
Students understand the processes of scientific investigation and design, conduct, communicate
about, and evaluate such investigations.

1.0 identifying and evaluating alternative explanations and procedures

2.0 asking questions and stating hypotheses that lead to different types of scientific
investigations (for example, experimentation, collecting specimens, constructing models,
researching scientific literature)

3.0 creating a written plan for an investigation

4.0 using appropriate tools, technologies, and measurement units to gather and organize data

5.0 interpreting and evaluating data in order to formulate conclusions
communicating results of their investigations in appropriate ways (for example, written
reports, graphic displays, oral presentations)

Objective: Students will measure the intensity of various sound sources at different times of the
day and in different locations. Students will observe the changing levels.

Background and Safety Information:

Noise pollution can be defined as sounds or noises that are loud, annoying and harmful to the
ear. Loud sounds can damage hearing, not only in humans, but also in animals. For example,
noises in the ocean, such as the sounds of ships and other industrial activity, can interfere with a
marine mammal's use of sound for navigating, hunting and communicating.

Sounds that are very loud and short in duration can damage a person's hearing quickly. Loud,
continuous sounds can cause long-term effects on hearing. In general, sounds can be
characterized by their frequency (or pitch) and intensity (or loudness). The vibrations that
produce a sound are cyclical and are measured in hertz (Hz). One hertz (Hz) equals the number
of cycles that occur per second. An adult with good hearing can generally hear frequencies in the
range 20 to 15,000 Hz. Children can usually hear frequencies above 20,000 Hz.

The sound pressure level is measured in decibels (dB). For example, a whisper can occur in the
range of 20-30 dB, while normal conversation is about 60 dB. A person that is shouting in your
face could easily exceed 80 dB! The correspondence between decibel levels and perceived

 28

loudness is fairly simple. A difference of 3 dB in noise level is barely noticeable, yet it represents
a doubling of the acoustic energy involved. For a noise to sound twice (or half) as loud, a
difference of about 10 dB is required. For example, a lawn mower measured at 80 dB will sound
about twice as loud as a hair dryer at 70 dB.

If conducting experiments near automobile traffic, reinforce safety guidelines to your students.
If experiments are conducted near areas of loud noise (i.e. jackhammer at a school construction
site), use proper ear protection.

Hypothesize: Will the Sound Levels in a classroom increase or decrease during a class period?
Why?

Procedure:

1) Place the wireless sensor node (WSN) in an open area of the classroom.
2) Collect data throughout an entire class period.
3) Print out copies of the graph of the data for students to examine.

Questions:

• At what point was the sound level reading the highest? The lowest?
• Were there any spikes on the graph that had large changes in sound? What could these

changes have been caused by (i.e. laughter, school bell, textbook falling on the floor,
etc.)?

• How did the sound levels compare to your hypothesis and expectations? Explain why any
difference in sound level occurred.

• How might a reading from one class period differ from another? Why?

Extensions: It may be a good idea to place the WSN in another classroom to analyze sound
levels after collecting data from the classroom of the students doing the experiment. This will
ensure that the presence of the sensors don't influence students to create or refrain from creating
noises. However, this does make it more difficult to interpret what caused certain changes in the
sound level. Some interesting classes or other places to collect data may include the following:

1) band or choir class
2) gym class
3) lunch period
4) a school sporting event (outdoor or indoor)
5) traffic in the school parking lot

Compare the sound levels of these areas with the data from the students' classroom. Why did
certain places have higher or lower readings than the students' class?

Discuss other sound-related issues, such as how human-generated noise can disturb an
environmental habitat. This will hopefully encourage some interest in how individuals working

 29

in scientific and technological fields are becoming increasingly sensitive to this issue. Ask
students for examples.

References:

http://www.pasco.com/experiments/middle_school/february_2003/home.html#purpose - PASCO
Scientific

 30

Appendix F

Narrative on WSN Hardware Selection for the Middle School WSN Project

1. Abstract

We found the Moteiv Tmote Invent to be the best solution for the Middle School WSN
Project’s hardware requirements. We based our decision on the Tmote Invent’s ease of
development, ease of deployment, and feature set.

2. Background

The goal of the Middle School WSN Project is to create a working science and/or math
curriculum for Colorado students grades 3 through 8 that utilizes wireless sensor node
technology (Reqs 3.1.1, 3.2.6). The curriculum must include any hardware, documentation
and training materials necessary for successful, guided implementation in an elementary or
middle school classroom (Reqs 3.2.2, 3.2.4).

Our WSN hardware selection is based on various factors, including ease of development,
ease of deployment, and feature set (Req. 3.1.1). In this document, we present a
recommendation for the WSN hardware and detail how our chosen hardware meets our
selection factors.

3. Recommendation

We researched current off the shelf wireless sensor nodes (hereafter referred to as “motes”)
during week one of the project. We found four models of motes from three separate vendors
that would be reasonable for use in our project. After careful consideration of each mote’s
ease of use and feature set, we found that the Moteiv Tmote Invent

1 is currently the best
solution for our WSN hardware needs. The remainder of this document explains our
“moteiv”ation for choosing this particular mote.

3.1 Ease of Development

Since the project’s classroom activities vary in their use of the WSN hardware, we will have
to develop software for use with the motes that tailors to each activity. Developing software
for each activity involves developing the software that runs on a given mote, as well as the
software that runs on a PC functioning as a wireless sensor network base station.

The Moteiv Tmote Invent, when purchased through Moteiv’s Tmote Invent Kit2, comes with
Moteiv’s Tmote Tools, a software suite designed to aid in the creation and maintenance of a
wireless sensor network3. The suite offers a graphical view of network topology, link status
and basic sensor readings (the temperature currently recorded at each mote, for example).
The Tmote Tools software will thus be beneficial for both the development and deployment
stages of our project.

 31

The Invent Kit also comes with a Moteiv distribution of TinyOS. TinyOS is a widely-used
operating system designed for motes; thus, there are many support channels available on the
internet. Moteiv distributes their TinyOS version with Application Programming Interface
(API) documentation and sample code for using the various features of the mote. All mote
development must be written in NesC (an extension of the C programming language) in
order to properly interface with TinyOS. Since our development skills in C are limited,
having the ample documentation and sample code is crucial in effective mote development.

3.2 Ease of Deployment

Although our project requires the presence of a Colorado School of Mines student or
representative familiar with the WSN technology to deploy the motes (Req. 3.2.2), the motes
themselves should still be relatively easy to set up and use (Req. 3.2.5).

Our classroom activities require that students from grades 3 through 8 personally handle
each mote (Req. 3.2.2). Thus, our motes must be sturdy enough for young children to use.
The Tmote Invent comes in a hard plastic housing that does not expose any of the internal
hardware, thus the mote will be safe for use by young children.

The Tmote Invent supports automatic on-demand ad-hoc networking; thus, the motes
themselves will reconfigure themselves (and the network) automatically if any motes are
added to or removed from the network.

The Tmote Invent Kit comes in a box with molded encasings. This allows safe, easy
transportation of up to eight motes.

Finally, the Tmote Invent contains a built-in lithium ion rechargeable battery. The mote
enters charge mode when connected to a PC via USB, and an LED indicator on the mote
itself gives the charge status of the mote. With a built-in battery, the hassle of purchasing
and installing batteries for motes that run on removable batteries is eliminated.

3.3 Feature Set

The Tmote Invent has built-in light, temperature, acceleration and sound sensors. For our
project’s intents and purposes (considering scope) these four sensors are more than enough
to demonstrate a working curriculum.

 32

Figure 1

The mote also has LEDs, a built-in speaker, a microphone, a user button and a headphone
jack (see Figure 1). The LEDs will allow the mote to provide instant feedback to the
students. The speaker is capable of reproducing voice-quality audio and serves as another
way to provide user feedback. The microphone may be used to record audio that can be sent
to all other nodes for playback. The user button allows further interactivity with the mote;
we can program the button to force the mote to check its sensors, for instance. Lastly, the
headphone jack allows for an even greater range of audio output than the built-in speaker.

The mote has 10 KB of RAM for applications and 48 KB of flash memory for storing sensor
readings. Each mote operates on a 2.4GHz, 250kbps wireless connection with an indoor
range of 50 meters and an outdoor range of 125 meters.

4. References

1. Moteiv Tmote Invent Product Page - http://www.moteiv.com/products/tmoteinvent.php

2. Moteiv Tmote Invent Kit - http://www.moteiv.com/xcart/product.php?productid=5

3. Moteiv Tmote Invent User Guide - http://www.moteiv.com/products/docs/tmote-
invent-user-guide.pdf

 33

Appendix G

Interpreting the Sensor Node’s Report

This appendix explains how to interpret the Crossbow
MICA2’s audiovisual cues to determine a reading.

Note that these audiovisual cues are only available on
TinyBrainz-programmed sensor nodes; they are not available
on MICA2s purchased directly from Crossbow. We will refer
to a TinyBrainz-programmed sensor node as a “TinyBrainz
mote” for the remainder of this document.

Anticipating the Report

The TinyBrainz mote blinks its yellow LED as a tick when it is
not taking a reading or sending a radio message. By default,
the TinyBrainz mote will take a reading every 30 ticks. The
mote will sound a long beep for each of the last 3 ticks to
signify that it is about to take a reading. After these ticks, all 3
LEDs will light up. After the mote takes its reading, the mote
will beep quickly and the LEDs will turn off. The mote will
then display the value of the reading.

Obtaining Numerical Values

The TinyBrainz mote reports numbers in a consistent manner, regardless of the kind of reading it
takes. The three LED colors each correspond to a base-10 place value. The yellow LED
corresponds to the hundreds place, the green LED corresponds to the tens place, and the red LED
corresponds to the ones place. Starting with the yellow LED, the mote will blink the current
place value, one blink per unit. The mote will continue in this fashion until the number is
reported. The mote will sound a long beep to signify that the number has been displayed.

For example, to report the number 27, the mote will blink its green LED twice and its red LED
seven times. For the number 134, the mote will blink its yellow LED once, its green LED three
times and its red LED four times. Refer to the Quick Reference guide below.

Quick Reference

LED Key
Yellow Hundreds

 Green Tens

Red Ones

Anticipating the Report

 x 30
 (One tick) (One beep for each of the last 3 ticks) (Reading) (Displaying report)

Report Example: 134

 34

Appendix H
/**
 * Temperature-enabled Sensor Application with LED Display
 * Part of the TinyBrainz Project
 *
 * This application allows a MICA2 mote equipped with an
 * MTS310CA sensor board to read in temperatures, then
 * convert those temperatures to Celsius and display the
 * temperatures using the standard TinyBrainz sensor display
 * method. Refer to the Teacher Packet for more information
 * on the display method.
 *
 * For use with "A Home for Kermy" and other projects needing
 * real-time temperature readings.
 *
 * Original code by Crossbow Technology, Inc.
 *
 * @author Brandon Ardiente, Steven Arth, Claire DuPont
 *
 * June 14th, 2007
 *
 */
/*
 * Copyright (c) 2004-2007 Crossbow Technology, Inc.
 * All rights reserved.
 * See license.txt file included with the distribution.
 *
 * $Id: XMTS310M.nc,v 1.5.4.6 2007/04/26 20:18:11 njain Exp $
 */

/**
 * XSensor multi-hop application for MTS310 sensorboard.
 *
 * @author Martin Turon, Alan Broad, Hu Siquan, Pi Peng
 */

/**
 *
 ***/
#include "appFeatures.h"
includes sensorboard;

module XMTS310M {
 provides {
 interface StdControl;

 35

 }
 uses {
// RF Mesh Networking
 interface MhopSend as Send;
 interface RouteControl;

 interface XCommand;
 interface XEEControl;

// Battery
 interface ADC as ADCBATT;
 interface StdControl as BattControl;

//Temp
 interface StdControl as TempControl;
 interface ADC as Temperature;

//Light
 interface StdControl as PhotoControl;
 interface ADC as Light;

// Mic
 interface StdControl as MicControl;
 interface Mic;
 interface ADC as MicADC;

// Sounder
 interface StdControl as Sounder;

// Accel
 interface StdControl as AccelControl;
 interface ADC as AccelX;
 interface ADC as AccelY;

// Mag
 interface StdControl as MagControl;
 interface ADC as MagX;
 interface ADC as MagY;

 //interface ADCControl;
 interface Timer;
 interface Leds;

#if FEATURE_UART_SEND
 interface SendMsg as SendUART;
#endif

 36

 command result_t PowerMgrEnable();
 command result_t PowerMgrDisable();
 command void health_packet(bool enable, uint16_t intv);
 command HealthMsg* HealthMsgGet();
 }
}

implementation {

 enum { START, BUSY, SOUND_DONE};

#define MSG_LEN 29

 TOS_Msg gMsgBuffer;
 TOS_Msg msg_buf_radio;
 TOS_MsgPtr msg_radio;
 HealthMsg *h_msg;

 // Begin TinyBrainz code addition
 norace uint16_t displayValue;
 norace uint8_t ticks = 0;
 norace uint8_t ticksUntilRead = 60;

 norace uint8_t hundreds = 0;
 norace uint8_t tens = 0;
 norace uint8_t ones = 0;

 float fTemp;
 float temperature, a, b, c, Rthr, tTemp;

 norace bool isSounding, isDisplaying = FALSE;
 // End TinyBrainz code addition

 bool sleeping; // application command state

 norace XDataMsg readings;

 char main_state;
 norace bool sound_state, sending_packet,sensinginsession;
 norace uint8_t miccnt;
 norace uint32_t val;

 // Zero out the accelerometer, chrl@20061206
 norace uint16_t accel_ave_x, accel_ave_y;
 norace uint8_t accel_ave_points;

 37

/***
 * Task to xmit radio message
 *
 * msg_radio->addr = TOS_BCAST_ADDR;
 * msg_radio->type = 0x31;
 * msg_radio->length = MSG_LEN;
 * msg_radio->group = TOS_AM_GROUP;
 ***/
 /**
 * send_radio_msg
 *
 * This function is called when the mote is ready to transmit sensor
 * information across the XMESH wireless network.
 *
 * We have modified this code to signal to the mote that once
 * the mote is done transmitting wirelessly, it should run
 * displayNumber() to display the value of displayValue on the LEDs.
 * This is actually called from the "Timer.fired" function.
 *
 */
 task void send_radio_msg() {
 uint8_t i;
 uint16_t len;
 XDataMsg *data;

 call Sounder.start(); //Leds.yellowOn();
 // Fill the given data buffer.
 data = (XDataMsg*)call Send.getBuffer(msg_radio, &len);

 for (i = 0; i <= sizeof(XDataMsg)-1; i++)
 ((uint8_t*)data)[i] = ((uint8_t*)&readings)[i];

 data->board_id = SENSOR_BOARD_ID;
 data->packet_id = 1;
 //data->node_id = TOS_LOCAL_ADDRESS;
 data->parent = call RouteControl.getParent();
 data->packet_id = data->packet_id | 0x80;
#if FEATURE_UART_SEND
 if (TOS_LOCAL_ADDRESS != 0) {
 call PowerMgrDisable();
 TOSH_uwait(1000);
 if (call SendUART.send(TOS_UART_ADDR, sizeof(XDataMsg),
 msg_radio) != SUCCESS)
 {
 atomic sending_packet = FALSE;
 call Sounder.stop(); //Leds.yellowOff();

 38

 call PowerMgrEnable();
 }
 }
 else
#endif
 {
 // Send the RF packet!
 if (call Send.send(BASE_STATION_ADDRESS,MODE_UPSTREAM,msg_radio,
sizeof(XDataMsg)) != SUCCESS) {
 atomic sending_packet = FALSE;
 call Sounder.stop(); //Leds.yellowOff();
 }
 }

 // Signal that the mote should now display the value of
 // displayValue on the LEDs
 isDisplaying = TRUE;

 return;
}

 /**
 * initialize
 *
 * This function is called when the mote is first started.
 *
 * We have made modifications to secure the timer_rate at 1000ms
 * rather than variable rate. The timer_rate may still be changed
 * via the command interface on the MoteView software package.
 *
 */

 static void initialize() {
 atomic {
 sleeping = FALSE;
 main_state = START;
 sound_state = TRUE;
 isSounding = FALSE;
 sending_packet = FALSE;

 // This line will set the timer to fire every 1000 ms, or each second
 timer_rate = 1000;

 // TinyBrainz removal
 /*
 #ifdef APP_RATE

 39

 timer_rate = XSENSOR_SAMPLE_RATE;
 #else
 #ifdef USE_LOW_POWER
 timer_rate = XSENSOR_SAMPLE_RATE +
((TOS_LOCAL_ADDRESS%255) << 7);
 #else
 timer_rate = XSENSOR_SAMPLE_RATE +
((TOS_LOCAL_ADDRESS%255) << 2);
 #endif
 #endif
 */
 miccnt=0;
 val=0;
 sensinginsession=FALSE;
 }
 }

 static void start()
 {
 call BattControl.start();
 call Mic.gainAdjust(64); // Set the gain of the microphone. (refer to Mic)
 call MicControl.start();
 call TempControl.start();
 call PhotoControl.start();
#ifdef MTS310
 call AccelControl.start();
 call MagControl.start();
#endif
 }

 /**
 * displayNumber
 *
 * This function is the TinyBrainz-standard for displaying values on
 * a 3-LED mote. This particular implementation uses code
 * specific to temperature conversion from raw ADC to Celsius.
 *
 */

 static void displayNumber() {
 if (hundreds == 0 && tens == 0 && ones == 0 && isDisplaying == TRUE) {

 // Begin temperature-specific conversion code
 tTemp = (float) displayValue;

 if(tTemp == 0){

 40

 temperature = 0;
 }
 else{
 a = 0.001307050F;
 b = 0.000214381F;
 c = 0.000000093F;
 Rthr = 10000 * (1023 - tTemp) / tTemp;

 temperature = 1 / (float)(a + b * log(Rthr) + c * pow(log(Rthr),3));
 temperature -= 273.15F; // Convert from Kelvin to Celcius
 }
 fTemp = temperature;
 // End temperature-sepcific conversion code

 // The following code is standard for all TinyBrainz applications,
 // the difference here being that 'displayValue' has been replaced by
 // 'fTemp.'
 hundreds = fTemp / 100;
 fTemp = fTemp - (hundreds * 100);
 tens = fTemp / 10;
 fTemp = fTemp - (tens * 10);
 ones = fTemp;
 isSounding = FALSE;
 call Leds.yellowOff();
 call Leds.greenOff();
 call Leds.redOff();
 }

 // For each value in the hundreds place, flash the yellow LED
 if (hundreds > 0) {
 if (isSounding) {
 call Leds.yellowOff();
 hundreds = hundreds - 1;
 isSounding = FALSE;
 }
 else {
 call Leds.yellowOn();
 isSounding = TRUE;
 }
 }

 // For each value in the tens place, flash the green LED
 else if (tens > 0) {
 if (isSounding) {
 call Leds.greenOff();
 tens = tens - 1;

 41

 isSounding = FALSE;
 }
 else {
 call Leds.greenOn();
 isSounding = TRUE;
 }
 }

 // For each value in the ones place, flash the red LED
 else if (ones > 0) {
 if (isSounding) {
 call Leds.redOff();
 ones = ones - 1;
 isSounding = FALSE;
 if (ones == 0){
 isDisplaying = FALSE;
 ticks = 0;
 call Sounder.start();
 }
 }
 else {
 call Leds.redOn();
 isSounding = TRUE;
 }
 }
 }

 task void battstop()
 {
 call BattControl.stop();
 }
 task void tempstop()
 {
 call TempControl.stop();
 }
 task void photostop()
 {
 call PhotoControl.stop();
 }
 task void Micstop()
 {
 call MicControl.stop();
 }

 task void Accelstop()

 42

 {
 call AccelControl.stop();
 }

/**
 * Initialize the component. Initialize ADCControl, Leds
 *
 **/
 command result_t StdControl.init() {

 atomic msg_radio = &msg_buf_radio;

 // MAKE_BAT_MONITOR_OUTPUT(); // enable voltage ref power pin as output
 // MAKE_ADC_INPUT(); // enable ADC7 as input
 call BattControl.init();
 // usart1 is also connected to external serial flash
 // set usart1 lines to correct state
 // TOSH_MAKE_FLASH_SELECT_OUTPUT();
 TOSH_MAKE_FLASH_OUT_OUTPUT(); //tx output
 TOSH_MAKE_FLASH_CLK_OUTPUT(); //usart clk
 // TOSH_SET_FLASH_SELECT_PIN();

 call Leds.init();
 call TempControl.init();
 call PhotoControl.init();
 call MicControl.init();
 call Mic.muxSel(1); // Set the mux so that raw microhpone output is selected
 call Mic.gainAdjust(64); // Set the gain of the microphone. (refer to Mic)
#if FEATURE_SOUNDER
 call Sounder.init();
#endif

#ifdef MTS310
 // Zero out the accelerometer, chrl@20061206
 accel_ave_x = 0;
 accel_ave_y = 0;
 accel_ave_points = ACCEL_AVERAGE_POINTS;

 call AccelControl.init();
 call MagControl.init();
#endif

if (TOS_LOCAL_ADDRESS==0)
 call PowerMgrDisable();

 43

 initialize();
 return SUCCESS;

 }
 /***
 * Start the component. Start the clock.
 *
 ***/
 command result_t StdControl.start()
 {
 call StdControl.stop();
 h_msg = call HealthMsgGet();
 h_msg->rsvd_app_type = SENSOR_BOARD_ID;
 call health_packet(TRUE,TOS_HEALTH_UPDATE);
 call Timer.start(TIMER_REPEAT, 700);

/*#ifdef MTS310
 call Timer.start(TIMER_REPEAT, 1024);
#else
 call Timer.start(TIMER_REPEAT, timer_rate);
#endif
 */ return SUCCESS;
 }

/***
 * Stop the component.
 *
 ***/
 command result_t StdControl.stop() {
 call BattControl.stop();
 call TempControl.stop();
 call PhotoControl.stop();
 call MicControl.stop();

#ifdef MTS310
 call AccelControl.stop();
 call MagControl.stop();
#endif

 return SUCCESS;
 }
/**
 * Measure Temp, Light, Mic, toggle sounder
 *
 **/

 44

 /**
 * Timer.fired
 *
 * This function is called each time the timer is fired. We have made
 * modifications to this code to allow the mote to "tick" until it reads
 * a value. We have also modified the code to allow our display function
 * to run when a value is ready to be displayed.
 *
 */
 event result_t Timer.fired() {

#ifdef MTS310
 // Zero out the accelerometer, chrl@20061206
 if (accel_ave_points >0)
 {
 //call Leds.greenOn();
 if (accel_ave_points == 1)
 {
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, timer_rate);
 }
 }
#endif

 if (sending_packet)
 return SUCCESS; //don't overrun buffers
 if(main_state==BUSY)
 return SUCCESS;

 // Begin TinyBrainz addition

 // If we are not displaying a number via the LEDs, we
 // should be counting down (ticking) until our next read
 if (isDisplaying == FALSE){

 ticks = ticks + 1;

 // The following code sounds the buzzer for the last
 // three ticks before taking a reading
 if (ticks == 1)
 call Sounder.stop();
 if (ticks == ticksUntilRead - 5)
 call Sounder.start();
 if (ticks == ticksUntilRead - 4)
 call Sounder.stop();
 if (ticks == ticksUntilRead - 3)

 45

 call Sounder.start();
 if (ticks == ticksUntilRead - 2)
 call Sounder.stop();
 if (ticks == ticksUntilRead - 1)
 call Sounder.start();
 if (ticks == ticksUntilRead)
 call Sounder.stop();

 // Flash the yellow LED as a 'tick'
 if (isSounding) {
 call Leds.yellowOff();
 isSounding = FALSE;
 }
 else {
 call Leds.yellowOn();
 isSounding = TRUE;
 }

 // After 'ticksUntilRead' passes, we are ready to read the
 // temperature
 if (ticks > ticksUntilRead) {
 isDisplaying = FALSE;
 hundreds=0;
 tens=0;
 ones=0;
 isSounding = FALSE;
 //ticks = 0;
 start();
 atomic main_state = BUSY;
 if (!sensinginsession){
 call ADCBATT.getData();
 atomic sensinginsession = TRUE;
 }
 }
 }

 // If we are still displaying a number on the LEDs, continue
 // to do so
 else{
 displayNumber();
 }
 // End TinyBrainz Addition

 return SUCCESS;
 }

 46

 /***
 * Battery Ref or thermistor data ready
 ***/
 async event result_t ADCBATT.dataReady(uint16_t data) {
 if (!sensinginsession) return FAIL;
 readings.vref = data;
 atomic sensinginsession = FALSE;
 post battstop();
 //call TempControl.start();
 call Temperature.getData();
 return SUCCESS;
 }

/***
 * Temperature ADC data ready
 * Read and get next channel.
 **/
 /**
 * Temperature.dataReady
 *
 * This function is called once the sensor board has successfully read a
 * temperature value. Our modification will turn all of the LEDS to the
 * on position to signify that the mote is in the process of taking a
 * reading.
 *
 * We set displayValue = data here, meaning that our displayNumber function
 * will display the data of this function (temperature).
 *
 */
 async event result_t Temperature.dataReady(uint16_t data) {
 readings.thermistor = data;

 call TempControl.stop();

 call Leds.yellowOn();
 call Leds.greenOn();
 call Leds.redOn();

 // We wish to display this function's data (temperature)
 displayValue = data;

 //call PhotoControl.start();
 call Light.getData();
 return SUCCESS;
 }

 47

/***
 * Photocell ADC data ready
 * Read and get next channel.
 **/
 async event result_t Light.dataReady(uint16_t data) {
 readings.light = data;
 call PhotoControl.stop();
 call MicADC.getData();
 return SUCCESS;
 }

/***
 * MicroPhone ADC data ready
 * Read and toggle sounder.
 * send uart packet
 **/
 async event result_t MicADC.dataReady(uint16_t data) {
 if(miccnt<50)
 {
 atomic miccnt=miccnt+1;
 TOSH_uwait(1000);
 if(val<data)
 {
 atomic val=data;
 }
 call MicADC.getData();
 return SUCCESS;
 }
 else
 {
 atomic miccnt=0;
 }
 readings.mic = val;//data;
 post Micstop();
 val=0;

#ifdef MTS310
 call AccelX.getData();
#else
 // This is the final sensor reading for the MTS300...
 atomic {
 if (!sending_packet) {
 sending_packet = TRUE;
 post send_radio_msg();
 }

 48

 }

#if FEATURE_SOUNDER
 if (sound_state) call Sounder.start();
 else call Sounder.stop();
 atomic {
 sound_state = SOUND_STATE_CHANGE;
 }
#endif
#endif
 return SUCCESS;
 }

/***
 * ADC data ready
 * Read and toggle sounder.
 * send uart packet
 ***/
 async event result_t AccelX.dataReady(uint16_t data) {
 // Zero out the accelerometer, chrl@20061207
 if (accel_ave_points>0)
 {
 accel_ave_x = accel_ave_x + data;
 call AccelY.getData();
 return SUCCESS;
 }

 readings.accelX = data - accel_ave_x;

 call AccelY.getData();
 return SUCCESS;
 }

/***
 * ADC data ready
 * Read and toggle sounder.
 * send uart packet
 ***/
 async event result_t AccelY.dataReady(uint16_t data) {
 // Zero out the accelerometer, chrl@20061207
 if (accel_ave_points>0)
 {
 accel_ave_y = accel_ave_y + data;
 accel_ave_points--;
 //call Leds.greenOff();

 49

 call StdControl.stop();
 if(accel_ave_points == 0)
 {
 accel_ave_x = accel_ave_x / ACCEL_AVERAGE_POINTS - 450;
 accel_ave_y = accel_ave_y / ACCEL_AVERAGE_POINTS - 450;
 }
 main_state = START;
 return SUCCESS;
 }

 readings.accelY = data - accel_ave_y;

 post Accelstop();
 call MagX.getData();
 return SUCCESS;
 }

 /**
 * In response to the <code>MagX.dataReady</code> event, it stores the
 * sample and issues command to sample the magnetometer's Y axis.
 * (Magnetometer B pin)
 *
 * @return returns <code>SUCCESS</code>
 */
 async event result_t MagX.dataReady(uint16_t data){
 readings.magX = data;

 call MagY.getData(); //get data for MagnetometerB
 return SUCCESS;
 }

 /**
 * In response to the <code>MagY.dataReady</code> event, it stores the
 * sample and issues a task to filter and process the stored magnetometer
 * data.
 *
 * It also has a schedule which starts sampling the Temperture and
 * Accelormeter depending on the stepdown counter.
 *
 * @return returns <code>SUCCESS</code>
 */
 async event result_t MagY.dataReady(uint16_t data){
 readings.magY = data;
 atomic {
 if (!sending_packet) {
 sending_packet = TRUE;

 50

 post send_radio_msg();
 }
 }

#if FEATURE_SOUNDER
 if (sound_state) call Sounder.start();
 else call Sounder.stop();
 atomic {
 sound_state = SOUND_STATE_CHANGE;
 }
#endif
 return SUCCESS;
 }

 /**
 * Handles all broadcast command messages sent over network.
 *
 * NOTE: Bcast messages will not be received if seq_no is not properly
 * set in first two bytes of data payload. Also, payload is
 * the remaining data after the required seq_no.
 *
 * @version 2004/10/5 mturon Initial version
 */
 event result_t XCommand.received(XCommandOp *opcode) {

 switch (opcode->cmd) {
 case XCOMMAND_SET_RATE:
 // Change the data collection rate.
 timer_rate = opcode->param.newrate;
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, timer_rate);
 break;

 case XCOMMAND_SLEEP:
 // Stop collecting data, and go to sleep.
 sleeping = TRUE;
 call Timer.stop();
 call StdControl.stop();
 call Leds.set(0);
 break;

 case XCOMMAND_WAKEUP:
 // Wake up from sleep state.
 if (sleeping) {
 initialize();
 call Timer.start(TIMER_REPEAT, timer_rate);

 51

 call StdControl.start();
 sleeping = FALSE;
 }
 break;

 case XCOMMAND_RESET:
 // Reset the mote now.
 break;

 case XCOMMAND_ACTUATE: {
 uint16_t state = opcode->param.actuate.state;
 if (opcode->param.actuate.device != XCMD_DEVICE_SOUNDER) break;

 // Play the sounder for one period.
 sound_state = state;
 if (sound_state) call Sounder.start();
 else call Sounder.stop();
 atomic {
 sound_state = SOUND_STATE_CHANGE;
 }
 break;
 }

 default:
 break;
 }

 return SUCCESS;
 }

#if FEATURE_UART_SEND
 /**
 * Handle completion of sent UART packet.
 *
 * @author Martin Turon
 * @version 2004/7/21 mturon Initial revision
 */
 event result_t SendUART.sendDone(TOS_MsgPtr msg, result_t success)
 {
 // if (msg->addr == TOS_UART_ADDR) {
 atomic msg_radio = msg;
 msg_radio->addr = TOS_BCAST_ADDR;

 if (call Send.send(BASE_STATION_ADDRESS,MODE_UPSTREAM,msg_radio,
sizeof(XDataMsg)) != SUCCESS) {

 52

 atomic sending_packet = FALSE;
 // call Leds.yellowOff();
 }

 if (TOS_LOCAL_ADDRESS != 0) // never turn on power mgr for base
 call PowerMgrEnable();

 //}
 return SUCCESS;
 }
#endif

 /**
 * Handle completion of sent RF packet.
 *
 * @author Martin Turon
 * @version 2004/5/27 mturon Initial revision
 */
 event result_t Send.sendDone(TOS_MsgPtr msg, result_t success)
 {
 atomic {
 msg_radio = msg;
 main_state = START;
 sending_packet = FALSE;
 call StdControl.stop();

 }
 call Sounder.stop(); //Leds.yellowOff();

#if FEATURE_UART_SEND
 if (TOS_LOCAL_ADDRESS != 0) // never turn on power mgr for base
 call PowerMgrEnable();
#endif

 return SUCCESS;
 }

 event result_t XEEControl.restoreDone(result_t result)
 {
 if(result) {
 call Timer.stop();
 call Timer.start(TIMER_REPEAT, timer_rate);
 }
 return SUCCESS;
 }
}

 53

/**
 * Configuration file for the
 * Temperature-enabled Sensor Application with LED Display
 * Part of the TinyBrainz Project
 *
 * Modifications allow more specific control over LEDs.
 *
 * Original code by Crossbow Technology, Inc.
 * @author Brandon Ardiente, Steven Arth, Claire DuPont
 *
 */

/*
 * Copyright (c) 2004-2007 Crossbow Technology, Inc.
 * All rights reserved.
 * See license.txt file included with the distribution.
 *
 * $Id: XMTS310.nc,v 1.3.4.4 2007/04/26 20:18:03 njain Exp $
 */

/**
 * XSensor multi-hop application for MTS310 sensorboard.
 *
 * @author Martin Turon, Alan Broad, Hu Siquan, Pi Peng
 */

#include "appFeatures.h"
includes sensorboardApp;

configuration XMTS310 {
// this module does not provide any interface
}
implementation
{
 components Main,
 TimerC,
 GenericCommPromiscuous as Comm,
 MULTIHOPROUTER,XMTS310M, QueuedSend,
 Voltage, MicC, PhotoTemp, Accel, Mag, Sounder, LedsC,

 XCommandC,
 HPLPowerManagementM,
 LEDS_COMPONENT
 Bcast;

 Main.StdControl -> XMTS310M;

 54

 Main.StdControl -> QueuedSend.StdControl;

 Main.StdControl -> MULTIHOPROUTER.StdControl;
 Main.StdControl -> Comm;
 Main.StdControl -> TimerC;

 LEDS_WIRING(XMTS310M)

 // Wiring for UART msg.
 XMTS310M.PowerMgrDisable -> HPLPowerManagementM.Disable;
 XMTS310M.PowerMgrEnable -> HPLPowerManagementM.Enable;
#if FEATURE_UART_SEND
 XMTS310M.SendUART -> QueuedSend.SendMsg[AM_XDEBUG_MSG];
#endif

 XMTS310M.Timer -> TimerC.Timer[unique("Timer")];

 // Wiring for Battery Ref
 XMTS310M.BattControl -> Voltage;
 XMTS310M.ADCBATT -> Voltage;

 XMTS310M.TempControl -> PhotoTemp.TempStdControl;
 XMTS310M.Temperature -> PhotoTemp.ExternalTempADC;

 XMTS310M.PhotoControl -> PhotoTemp.PhotoStdControl;
 XMTS310M.Light -> PhotoTemp.ExternalPhotoADC;

 XMTS310M.Sounder -> Sounder;

 XMTS310M.MicControl -> MicC;
 XMTS310M.MicADC -> MicC;
 XMTS310M.Mic -> MicC;

 XMTS310M.AccelControl -> Accel;
 XMTS310M.AccelX -> Accel.AccelX;
 XMTS310M.AccelY -> Accel.AccelY;

 XMTS310M.MagControl-> Mag;
 XMTS310M.MagX -> Mag.MagX;
 XMTS310M.MagY -> Mag.MagY;

 XMTS310M.XCommand -> XCommandC;
 XMTS310M.XEEControl -> XCommandC;

 // Wiring for RF mesh networking.
 XMTS310M.RouteControl -> MULTIHOPROUTER;

 55

 XMTS310M.Send -> MULTIHOPROUTER.MhopSend[AM_XMULTIHOP_MSG];
 MULTIHOPROUTER.ReceiveMsg[AM_XMULTIHOP_MSG] -
>Comm.ReceiveMsg[AM_XMULTIHOP_MSG];
 XMTS310M.HealthMsgGet -> MULTIHOPROUTER;
 XMTS310M.health_packet -> MULTIHOPROUTER;

 // TinyBrainz addition
 XMTS310M.Leds -> LedsC.Leds;
}

