
CSCI 262 Lectures 11 & 12 – Sets & Maps

Outline

• Sets – a container that holds unique elements

◦ Principal operations are finding an element (testing to see if it is in the set), adding an element, and removing

an element (we sometimes call these elements keys)

◦ We also care about iterating over the contents of a set – which we cannot do using indexing!

• Maps – a container that associates unique keys with values

◦ Principal operations including finding a key (is the key in the map), getting the value associated with a key,

adding key/value pairs, removing key/value pairs, and updating the value associated with a key

◦ We also care about iterating over the contents of a map – again, no indexing!

• Sets and maps may be available in ordered and unordered varieties, depending on the underlying data structure

(hashtables for unordered, binary search trees for ordered)

◦ Ordered is slightly slower, but allows iteration of elements in sort order

◦ Unordered is slightly faster, but has no obvious ordering of the keys

• Iterators are objects which act like pointers into a collection, and can be used to iterate over sets and maps

◦ This also gives us the range-based for loop

◦ Iterators on sets let us look at the elements (sometimes called keys)

◦ Iterators on maps let us look at the key-value pairs

• Map operations in C++ can be tricky – be careful to understand the different behaviors, especially of the []

operator

Readings

Read chapter 15.3 (on hashtables) for Monday; we’ll look at binary search trees at a later time

Self Check

1. What is the easiest method to test to see if a key is already in a set or map?

2. What are the contents of a set of integers after inserting the values 42, 17, -3, 17, 8 ?

3. What does a C++ map<string, string> contain if we use insert or emplace to add the pairs { “dog”, “bark” },

{ “cat”, “meow” }, { “dog”, “woof” }, { “snake”, “hiss” } ?

4. How can you update the value associated with a key in a map?

5. How can you print out all of the contents of a map?

6. What are the Big O complexities of all operations on sets and maps (answer for both ordered and unordered)?

For Further Practice

In lecture 11, we discussed ways to use a vector to implement a set data structure (not efficiently, but correctly). How

might you implement a map using two vectors? How about one vector?

Feb 27, 2019 CSCI262 L12 Pre-Lecture

(Ordered) Sets

What is the output of the below code snippet?

#inc lude <iostream>
#inc lude <set>
us ing namespace std ;

i n t main () {
set<int> s ;
s . i n s e r t (1) ;
s . i n s e r t (1) ;
s . i n s e r t (2) ;
s . i n s e r t (2) ;
s . i n s e r t (0) ;
s . i n s e r t (0) ;
f o r (i n t i : s) {

cout << i << ” ” ;
}
re turn 0 ;

}

Unordered Sets

What is contained in the unordered set after the below code snippet?

#inc lude <iostream>
#inc lude <unordered set>
us ing namespace std ;

i n t main () {
unordered set<int> s ;
s . i n s e r t (1) ;
s . i n s e r t (1) ;
s . i n s e r t (2) ;
s . i n s e r t (2) ;
s . i n s e r t (0) ;
s . i n s e r t (0) ;
r e turn 0 ;

}

1

