Recursive Decomposition

- Recursion works well when:
 - Problem can be written in terms of smaller sub-problems
 - Sub-problems have the *same structure* as original
 - Solving all sub-problems solves original problem
- Examples (from previous lectures)
 - Linked list viewed as simply a single node containing a pointer to a smaller linked list
 - Palindrome test written as: "check outer two characters, then test for smaller palindrome"

Recursion as Induction

- The basic form of recursion follows that of induction:
 - Recursive base case(s) == inductive base case(s)
 - If we apply our function to problem of size 1, then we get the correct answer
 - E.g., if a string is size 1 or 0, then it is a palindrome
 - Recursive step == inductive step
 - If we are correct on problem of size n, then we are correct on a problem of size n + 1
 - Palindromes are a bit tricky here, because we actually prove 2 cases, one for odd numbers and one for evens:
 - If our program works for strings of n letters, then prove it works for strings of n + 2 letters

Example: The Towers of Hanoi

Object: move all disks from left spindle to middle spindle.
Rules:
1. Move only 1 disk at a time.
2. A disk can only be moved onto an empty spindle or a larger disk.

Ways of Thinking About Recursion

- Top down or bottom up:
 - Top down: think of the whole problem and how it can be decomposed.
 - If I could solve a smaller problem *of the same form*, could I solve the whole problem?
 - Bottom up: what is the smallest problem I *can* solve?
 - If I can solve that, would it help me solve larger problems?
Consider this arrangement:

- If we could move the right stack onto the green disk, we’d be done.
- This is a smaller problem of the original form:
 - The stack to be moved has one fewer than the original.
 - Although the middle spindle is occupied, every disk to be moved is smaller than the green disk — so no problem!

Does this help us? If we can get to this partial solution, it does...

Well, we can, in 2 steps:
1. Move the smaller stack to the right spindle, leaving the green disk in place (hey, that’s another instance of the same problem!)
2. Move the green disk to the center. Moving 1 is easy — that must be the base case!

See it in Action

http://towersofhanoi.info/Animate.aspx

(You can find many others online, I just liked this one.)

OK, moving 1 disk is easy. Can I move 2 disks?
Bottom Up

Yes, in three moves:
1. Move the top disk to the third spindle.
2. Move the bottom disk to the middle (final) spindle.
3. Move the top disk to the middle spindle.

Bottom Up

If I have 3 disks, I need to:
1. Move the top 2 to the rightmost spindle
2. Move the bottom disk
3. Move the top 2 back

Generalize to n disks!

Example: Permutations

- Problem: find all permutations of an ordered set
 - E.g., what are all permutations of \((a, b, c) \)?
 - Answer: \((a,b,c) \), \((a,c,b) \), \((b,a,c) \), \((b,c,a) \), \((c,a,b) \), \((c,b,a) \)
 - What about \((a,b,c,d,e,f,g,h,...) \)?
 - Ugh. Let the computer do it.
 - OK... how?

You Try: Permutations

- What is the recursive decomposition?
 - E.g., what is a smaller problem than \((a,b,c) \)?

- What is the base case?

Maze Solving

Consider solving a maze:
- Assume potential loops, so right-hand rule fails
- Instead, have string and a marker
 - Mark where you’ve been, so you don’t loop
 - Unroll string behind you so you can back up
 - Pick a passage, follow as far as you can until dead-ending or repeating yourself
 - Back-up to the last branching and try one you haven’t tried (or back up further if no choices left)
Backtracking

- The maze solving algorithm above is an example of backtracking
- Essentially, try every possibility in a branching problem, avoiding repeats
- This sort of has the recursive sub-structure:
 - The problem is only made smaller by a little bit
 - We have to remember choices (or do we?)

Maze Solving Pseudocode

```
solve_2d_maze(maze, x, y):
    if at exit, yay!
    else:
        mark maze[x][y] as visited
        if can go right:
            solve_2d_maze(maze, x+1, y)
        if can go down:
            solve_2d_maze(maze, x, y+1)
        etc.
```

Backtracking for Games

- For 2-player perfect information games
- Like trying every possibility, but:
 - Assume each player is trying to win 😊
 - Each player has a different goal, so have to switch objective between moves
- Classic algorithm is called minimax

Example: Nim

- The game:
 - Put \(n \) tokens on the table
 - Each player gets to take 1, 2, or 3 tokens each turn
 - Player who takes the last token loses
- Work backwards from base case:
 - If 1 coin left for other player, you win
 - Thus, if 2-4 coins left for you, you can force win
 - However, if 5 coins left for you, you lose, because any move you make leaves a good move for opponent...

Solving Nim Recursively

```
find_good_move(ncoins):
    for j = 1 to min(3, ncoins):
        // try possible moves
        // try for win in one move
        if ncoins - j == 1:
            // base case: WIN 😊
            return j

    // next, see if opponent must lose if I make this move
    if find_good_move(ncoins - j) == NO_GOOD:
        return j

    // I tried everything, no luck: I must lose
    return NO_GOOD
```

MINIMAX
Up Next

- Friday, February 8
 - Lab 5 - TBD
 - Project 2 due
 - APT 3 assigned
- Week of February 11: Interview Grading