1/16/2019

CSCI 262
Data Structures

4 — Linked Lists, part 1

CS@Mines

Overview

= Qur first data structure: Linked List

= Practice some old (or recently new) concepts:
= Pointers
= Classes & objects
= Encapsulation

= |ntroduces some new concepts at high level:
= Dynamic memory allocation
= Analysis of algorithms

We’'ll describe, create, and analyze a very simple linked
list class in this lecture sequence.

CSiaMines

Linked Lists

= A linked structure composed of node objects
= Each node contains one data value
= Each node contains a pointer to the next node

= Nodes can be independently created/destroyed
= _..through the use of dynamic allocation — more soon!

CS@Mines

Linked Lists Illustrated

A//////// \ N

14 36 a2 9 |<end>|

This list contains {14,36,42,9}.

CSiaMines

Node Class

Here’s a very simple implementation of a node:

Graphical representation

class node {
public:
int data;
node* next;

: w
9 data next

Pointer to node, inside node!

1 | —L | 9 |nNuw

Note NULL pointer in tail node!

(Should use nullptr, but NULL fit better.)

CS@Mines

Creating Nodes

Where do nodes come from...?

Don’t worry about where just yet, but here’s
how we do it:

* — .
node ptr‘ = new nOde) new is a C++ keyword.
You can’t useitas a
variable name, etc.

CSaMines

1/16/2019

Make a Linked List

class node {
public:
int data;
node* next;

1

int main() {
node* head;
head = new node;
head->data = 14;

We just made this:

14 | <end>)

head->next = nullptr;

CS@Mines

Make a Linked List

class node {
public:
int data;
node* next;

1

int main() { The -> operator lets us

* .
node* head; access the member variables of
head = new node;
head->data = 14;

head->next = nullptr;

head->data
is equivalent to
(*head) .data

dereference the pointer head and

the node pointed to in one step.

CSiaMines

Making it Longer

int main() {

node* head;

head = new node;
head->data = 14;
head->next = new
head->next->data
head->next->next
head->next->next-
head->next->next-

node;
= 36;
= new node;
>data = 42;

>next = nullptr;

<end>

CS@Mines

Print List

Let’s print our list.
Remember, head is a pointer to our first node.

for (node* p = head; p != nullptr; p = p->next) {
cout << p->data << endl;

}

The pointer p moves down the list, pointing to each node in
turn.

CSiaMines

Why linked lists?

INTERLUDE

CS@Mines

Why Linked Lists

Seems overly complex: why not just use a vector?
It’s all about trade-offs:
= \ectors are built on arrays

= On the plus side: random access!

= Low cost to get/set values at a particular index
= However:

= (Relatively) difficult to grow and shrink

= |nsert/remove operations expensive

= Linked lists built on independent nodes

= Grow/shrink trivial
= Insert/remove inexpensive-ish
= However, we lose random access

CSaMines

1/16/2019

Thought Exercise

What is involved in inserting a value at some index
in an array?

[14]36[a2] o [88] 2 [6a]30]11]15]

0 1 2 3 4 5 6 7 8 9

E.g., insert the value 27 before value 88.

Do you think it is easier or harder with a linked list?

CS@Mines

OPERATIONS

CSiaMines

Linked List Operations: add

Making a linked list like we did a few slides ago seems a
bit silly...

Let’s do it smarter with a function:

= Start with existing list

= Create new node containing requested value

= Add to end

head
CS@Mines

Linked List Operations: add

void add_to_tail(node* head, int val) {
// start from head, travel down links to find tail.
node *ptr = head;
while (ptr->next != nullptr)
ptr = ptr->next;

// ptr now points to tail node
ptr->next = new node;
ptr->next->data = val;
ptr->next->next = nullptr;

CSiaMines

Making a Linked List (Do-over)

int main() {
node* head = new node;
head->data = 14;
head->next = nullptr;

add_to_tail(head, 36);
add_to_tail(head, 42);
add_to_tail(head, 9);

14 36 a2 9 |<end>

CS@Mines

Encapsulating Linked List

Before we add more operations, we should
probably make a class.

Advantages:

= Keep track of head/tail pointers so user doesn’t
have to

= Prevent user from accidentally messing up list
structure

= Keep useful metadata (e.g., size)
= Encapsulate data with operations on the data

CSaMines

1/16/2019

Linked List Class: Declaration

class linked_list {

public:
void add_to_tail(int val);
void print();
// more to come!

private:
class node {
public:
int _data;
node* _next;
iy
node* head = nullptr; NoFe the initializers on these
node* _tail = nullptr; variables; only allowed in C++ 11
int _size = 0; and later. We're using these in
) place of a default constructor.

CS@Mines

Linked List Class: Methods

void linked_list::add_to_tail(int val) {
// make new tail node
node* p = new node;
p->_data = val;
p->_next = nullptr;

// if list is empty, new node becomes both head and tail
if (_head == nullptr) {

head = _tail = p;
} else {

_tail->_next = p;

“tail = p; // update tail only

_sizer+;

)}

void linked_list::print() {
for (node* p = _head; p != nullptr; p = p->_next) {
cout << p->_data << endl;
13
1

CSiaMines

Stay Tuned...

Part 2 of the lecture:

= |Vlore operations

= Analysis of performance
= Applications

CS@Mines

Up Next

= Friday, January 18

= Lab2-1/0

= APT1due

= Project 1 — Personality Test assigned
= Monday, January 21

= Martin Luther King, Jr. Day — No class
= Wednesday, January 23

= Linked lists, part 2

= Lab 2 due

= Reading: Chapter 14.4 - 14.6

CSiaMines

