
1/16/2019

1

CSCI 262

Data Structures

4 – Linked Lists, part 1

Overview

 Our first data structure: Linked List
 Practice some old (or recently new) concepts:

 Pointers
 Classes & objects
 Encapsulation

 Introduces some new concepts at high level:
 Dynamic memory allocation
 Analysis of algorithms

We’ll describe, create, and analyze a very simple linked
list class in this lecture sequence.

Linked Lists

 A linked structure composed of node objects

 Each node contains one data value

 Each node contains a pointer to the next node

 Nodes can be independently created/destroyed

 …through the use of dynamic allocation – more soon!

Linked Lists Illustrated

<end>14 36 942

head

nodes

links

tail

This list contains {14,36,42,9}.

Node Class

Here’s a very simple implementation of a node:

class node {

public:

int data;

node* next;

};

Pointer to node, inside node!

14

data

9 NULL

next

Note NULL pointer in tail node!
(Should use nullptr, but NULL fit better.)

Graphical representation

Creating Nodes

Where do nodes come from…?

Don’t worry about where just yet, but here’s
how we do it:

node* ptr = new node;

Declare a pointer
variable (of type
pointer to node)

Create (dynamically
allocate) a node
object.

new is a C++ keyword.
You can’t use it as a
variable name, etc.

1/16/2019

2

Make a Linked List

class node {

public:

int data;

node* next;

};

int main() {

node* head;

head = new node;

head->data = 14;

head->next = nullptr;

}

<end>14

We just made this:

Make a Linked List

class node {

public:

int data;

node* next;

};

int main() {

node* head;

head = new node;

head->data = 14;

head->next = nullptr;

}

The -> operator lets us
dereference the pointer head and
access the member variables of
the node pointed to in one step.
head->data

is equivalent to
(*head).data

Making it Longer

int main() {

node* head;

head = new node;

head->data = 14;

head->next = new node;

head->next->data = 36;

head->next->next = new node;

head->next->next->data = 42;

head->next->next->next = nullptr;

}

14 36 42 <end>

Print List

Let’s print our list.

Remember, head is a pointer to our first node.

…

for (node* p = head; p != nullptr; p = p->next) {

cout << p->data << endl;

}

The pointer p moves down the list, pointing to each node in
turn.

Stopping condition: remember the tail
node’s next pointer is set to nullptr.

This is how you advance in a linked list.
No indexes!

INTERLUDE

Why linked lists?

Why Linked Lists

Seems overly complex: why not just use a vector?
It’s all about trade-offs:
 Vectors are built on arrays

 On the plus side: random access!
 Low cost to get/set values at a particular index

 However:
 (Relatively) difficult to grow and shrink
 Insert/remove operations expensive

 Linked lists built on independent nodes
 Grow/shrink trivial
 Insert/remove inexpensive-ish
 However, we lose random access

1/16/2019

3

Thought Exercise

What is involved in inserting a value at some index
in an array?

E.g., insert the value 27 before value 88.

Do you think it is easier or harder with a linked list?

14 36 42 9 88 2 64 39 11 15

0 1 2 3 4 5 6 7 8 9

OPERATIONS

Linked List Operations: add

Making a linked list like we did a few slides ago seems a
bit silly…

Let’s do it smarter with a function:

 Start with existing list

 Create new node containing requested value

 Add to end

14 36 942

head

<end>

Linked List Operations: add

void add_to_tail(node* head, int val) {

// start from head, travel down links to find tail.

node *ptr = head;

while (ptr->next != nullptr)

ptr = ptr->next;

// ptr now points to tail node

ptr->next = new node;

ptr->next->data = val;

ptr->next->next = nullptr;

}

Note the pattern here; like in our
previous for loop,
ptr = ptr->next

advances us to the following
node. Note this time we stop one
step earlier, before ptr = nullptr.

Hm, this would be even easier if
we kept a pointer to the tail node
as well as the head node…

Making a Linked List (Do-over)

int main() {

node* head = new node;

head->data = 14;

head->next = nullptr;

add_to_tail(head, 36);

add_to_tail(head, 42);

add_to_tail(head, 9);

}

14 36 42 9 <end>

Encapsulating Linked List

Before we add more operations, we should
probably make a class.

Advantages:
 Keep track of head/tail pointers so user doesn’t

have to
 Prevent user from accidentally messing up list

structure
 Keep useful metadata (e.g., size)
 Encapsulate data with operations on the data

1/16/2019

4

Linked List Class: Declaration

class linked_list {
public:

void add_to_tail(int val);
void print();
// more to come!

private:
class node {
public:

int _data;
node* _next;

};

node* _head = nullptr;
node* _tail = nullptr;
int _size = 0;

};

This declares a class that can only be
used within the linked_list class –
great for our purposes, because
user doesn’t need to know about it!

Note the initializers on these
variables; only allowed in C++ 11
and later. We’re using these in
place of a default constructor.

Linked List Class: Methods

void linked_list::add_to_tail(int val) {
// make new tail node
node* p = new node;
p->_data = val;
p->_next = nullptr;

// if list is empty, new node becomes both head and tail
if (_head == nullptr) {

_head = _tail = p;
} else {

_tail->_next = p;
_tail = p; // update tail only

}
_size++;

}

void linked_list::print() {
for (node* p = _head; p != nullptr; p = p->_next) {

cout << p->_data << endl;
}

}

Stay Tuned…

Part 2 of the lecture:

 More operations

 Analysis of performance

 Applications

Up Next

 Friday, January 18
 Lab 2 – I/O
 APT 1 due
 Project 1 – Personality Test assigned

 Monday, January 21
 Martin Luther King, Jr. Day – No class

 Wednesday, January 23
 Linked lists, part 2
 Lab 2 due
 Reading: Chapter 14.4 – 14.6

