
5/2/2019

1

CSCI 262

Data Structures

22 – Graphs

Today’s Lecture

 Describe the properties, relationships among
vertices and edges, and types (e.g., simple,
complete).

 Discuss examples and possible applications of
various kinds of graphs

 Identify two principal data structures for graphs
(e.g., adjacency matrix and adjacency lists)

 Compare graph traversal techniques (e.g.,
breadth-first and depth-first)

Graphs

 Model the relationships between things

 Composed of vertices and edges.

 We write G = (V,E)

 V = set of vertices (aka nodes or things)

 E = set of edges (aka relationships)

 Degree = number of edge touches

Types of Graphs

B

W
A

D

Y

X

C
Z

Undirected Graph
Edges are bi-directional

Directed Graph

Paths in graphs: a path is a sequence of vertices p0, p1, …, pm such that there is an
edge from pi to pi+1. We say there is a path from p0 to pm.

Above, there is a path from A to C and C to A, and from W to Z but not from Z to W.

Simple Graphs

Non-simple:
Has self edges aka loops

Non-simple:
Multiple edges

We will be primarily concerned with simple graphs, i.e., ones with no self edges
and no multiple edges.

Some Applications

Q. What kinds of graphs do you encounter daily?

5/2/2019

2

Some Applications

Boulder

Golden

Denver

Ft.
Collins

Route Finding Game State Graph
(Bogus Chess Example)

Many other applications – consider just some of the graphs we interact with:
• Networks (electrical, digital, phone)
• Flows (natural resources such as water, supply chain, traffic)
• Assemblies (molecules, circuit boards, software modules)

e4 e5

e4 c6

e4 e6

e4 Ne6

Exercise – Complete Graph

Definition – A complete graph is where every pair of vertices (V) in a simple
undirected graph (G) is connected by a unique edge (E).
Vertices = n = Degree = n-1= # Edges =

Exercise – Complete Graph

Definition – A complete graph is where every pair of vertices (V) in a simple
undirected graph (G) is connected by a unique edge (E).
Vertices = n = 6 Degree = n-1= 5 # Edges = 15 n(n-1)

2

Data Structures for Graphs

 Two principal data structures:

 Adjacency matrix

 Adjacency lists

 Applications for each, but:

 Adjacency matrix always large: |V|2

 Adjacency lists often more efficient

 Only stores edges that exist

 Most graphs are sparse – have |E| << |V|2

Adjacency Matrix

A B C D

A 0 1 0 1

B 1 0 1 1

C 0 1 0 1

D 1 1 1 0

B

W
A

D

Y

X

C
Z

W X Y Z

W 0 0 1 0

X 1 0 1 0

Y 0 0 0 1

Z 0 0 0 0

Adjacency Lists

A B C D

B

W
A

D

Y

X

C
Z

W X Y Z

B
D

A
C
D

B
D

A
B
C

Typically, linked lists

Y W
Y

Z

5/2/2019

3

Graph Traversal (Search)

Two principal ways of traversing a graph:

 Depth First Search (DFS)
 Start at some vertex

 Follow a simple path discovering new vertices until
you cannot find a new vertex.

 Back-up until you can start finding new vertices.

 Breadth First Search (BFS)
 Starting at a source vertex

 Explores the edges to “discover” every vertex
reachable from the source.

Depth First Search (Recursive)

// initialization

for all u in V:

set u.visited = false

// Traverse graph G starting from node v

dfs(G, v)

set v.visited = true

for each edge (v,u) in E:

if not u.visited

do dfs(G, u)

Depth First Search (Stack)

dfs(G, v)
for all u in V:

set u.visited = false

let S be a stack
set v.visited = true
S.push(v)
while S not empty:

u = S.pop()
for all edges (u, w) in E:

if not w.visited:
S.push(w)
set w.visited = true

Breadth First Search (Queue)

bfs(G, v)
for all u in V:

set u.visited = false

let Q be a queue
set v.visited = true
Q.push(v)
while Q not empty:

u = Q.pop()
for all edges (u, w) in E:

if not w.visited:
Q.push(w)
set w.visited = true

Other Algorithms to Explore

 Route finding (shortest/best paths)
 Dijkstra’s algorithm
 A*

 Minimum Spanning Tree – Connect a graph using the
least resources (edge weights)
 Kruskal’s algorithm
 Prim’s algorithm

 Max flow – what is the maximum amount you can
move along a network?

 Game playing
 Minimax
 Alpha-beta pruning, iterative deepening, many more

You can find all of these on Wikipedia…

Up Next

 Wednesday, May 2

 Final exam review

 Project 5 due

 Thursday, May 10

 8:00 am – 10:00 am: Section A final (BB W280)

 3:15 pm – 5:15 pm: Section B final (CO 209)

