

Today's Lecture

- Describe the properties, relationships among vertices and edges, and types (e.g., simple, complete).
- Discuss examples and possible applications of various kinds of graphs
- Identify two principal data structures for graphs (e.g., adjacency matrix and adjacency lists)
- Compare graph traversal techniques (e.g., breadth-first and depth-first)

Graphs

- Model the relationships between things
- Composed of vertices and edges.
- We write G = (V,E)
- $\mathrm{V}=$ set of vertices (aka nodes or things)
- E = set of edges (aka relationships)
- Degree = number of edge touches

Paths in graphs: a path is a sequence of vertices $p_{0}, p_{1}, \ldots, p_{m}$ such that there is an edge from p_{i} to p_{i+1}. We say there is a path from p_{0} to p_{m}.

Above, there is a path from A to C and C to A, and from W to Z but not from Z to W.
CS@Mines

Exercise - Complete Graph

Definition - A complete graph is where every pair of ver
undirected graph (G) is connected by a unique edge (E).
\# Edges =

Data Structures for Graphs

- Two principal data structures:
- Adjacency matrix
- Adjacency lists
- Applications for each, but:
- Adjacency matrix always large: $|\mathrm{V}|^{2}$
- Adjacency lists often more efficient
- Only stores edges that exist

Definition - A complete graph is where every pair of vertices (V) in a simple undirected graph (G) is connected by a unique edge (E). $\#$ Vertices $=n=6$

Degree $=n-1=5 \quad \#$ Edges $=15$ CS@Mines | $n(n-1)$ |
:---:
2

- Most graphs are sparse - have $|E| \ll|V|^{2}$

CS@Mines

Graph Traversal (Search)

Two principal ways of traversing a graph:

- Depth First Search (DFS)
- Start at some vertex
- Follow a simple path discovering new vertices until you cannot find a new vertex.
- Back-up until you can start finding new vertices.
- Breadth First Search (BFS)
- Starting at a source vertex
- Explores the edges to "discover" every vertex reachable from the source.

CS@Mines

Depth First Search (Recursive)

// initialization
for all u in V :
set u.visited $=$ false
// Traverse graph G starting from node v
dfs ($G, ~ v$)
set v. visited $=$ true
for each edge (v, u) in E : if not u.visited
do $\mathrm{dfs}(\mathrm{G}, \mathrm{u})$

Depth First Search (Stack)

dfs (G, v)
for all u in V : set u.visited = false
let S be a stack
set v.visited $=$ true
S.push(v)
while S not empty:

u = S.pop()

for all edges (u, w) in E :
if not w.visited:
S.push(w)
set w.visited = true

Breadth First Search (Queue)

bfs ($G, ~ v$)

for all u in V : set u.visited = false
let Q be a queue
set v. visited $=$ true
Q.push (v)
while Q not empty: $u=Q \cdot p o p()$ for all edges (u, w) in E :
if not w.visited:
Q.push(w)
set w.visited = true
CS@Mines

Other Algorithms to Explore

- Route finding (shortest/best paths)
- Dijkstra's algorithm
- A*
- Minimum Spanning Tree - Connect a graph using the least resources (edge weights)
- Kruskal's algorithm
- Prim's algorithm
- Max flow - what is the maximum amount you can move along a network?
- Game playing
- Minimax
- Alpha-beta pruning, iterative deepening, many more

