
4/23/2019

1

CSCI 262

Data Structures

21 – Inheritance

Inheritance Overview

 Classes can inherit from other classes

 Properties (variables)

 Behavior (methods)

 Inheritance serves various functions

 Modeling of class relationships

 Code reuse

 Subtyping/polymorphism

Inheritance Example

class animal {

public:

string name;

void print();

};

class dog : public animal {

public:

string breed;

};

This signifies that dog inherits from
animal. (The “public” just means all
members have the same visibility in
the subclass as in the superclass.)

Superclass aka “base” or “parent” class.

Subclass aka “derived” or
“child” class.

Inheritance: Modeling

Relationships

class cat : public animal {

};

We say cat “is a” type of animal*

*This language can lead to bad modeling choices. E.g., a square “is a” type of
rectangle. If we model this way in C++, a natural choice is to give rectangle
properties of height and width. If square inherits from rectangle, it gets these two
independent properties, but in a square, they must be identical. So not every “is
a” relationship in real life makes sense in C++!

Inheritance: Properties

Note that animal defined a property:

string name;

This is inherited by dog and cat.

We can use name in dog and cat because it was
defined by the superclass:

dog d;

cat c;

d.name = "Rex";

c.name = "Fluffy";

Inheritance: Properties

Note that dog defines a new property,

string breed;

This is unique to dog; we can’t use it in animal
or cat:

dog d;

cat c;

d.breed = "Dachshund";

c.breed = "Tabby"; error!

4/23/2019

2

Inheritance: Behavior

Behaviors can also be inherited, leading to very
powerful code reuse.

E.g.,
void animal::print() {

cout << "My name is " << name << ". ";

cout << endl;

}

defines a reasonable print behavior for cat and
dog.

Inheritance: Overrides

If we don’t like the superclass behavior, we can change it in the
subclass:

class dog : public animal {

public:

string breed;

void print();

};

void dog::print() {

cout << "My name is " << name << "." << endl;

cout << "I am a " << breed << "." << endl;

}

You cannot:
– Override properties

– Change the return type of methods

Inheritance: Calling on the Super

We can improve our print() method slightly by
reusing the superclass behavior:

dog::print() {

animal::print();

cout << "I am a " << breed << "." << endl;

}

Example So Far

…

dog d;

cat c;

d.name = "Rex";

d.breed = "Dachshund";

c.name = "Fluffy";

c.print();

d.print();

…

Output is:
My name is Fluffy.

My name is Rex.

I am a Dachshund.

I encourage you to try these code
snippets for yourself, and modify
them to see what else you can do.

Inheritance: Polymorphism

Note we can now use dogs and cats wherever
we would use an animal:

…

void print_animal(animal &a) { a.print(); }

print_animal(c);

print_animal(d);

…

What does this output?

(Hint: it is different from previous page!)

Inheritance: Polymorphism

What happens here:

…

void print_animal(animal &a) { a.print(); }

print_animal(c);

print_animal(d);

…

is that, even though the parameter a holds a
reference to the dog object, C++ doesn’t treat it
like a dog in terms of its print() behavior.

4/23/2019

3

Inheritance: Polymorphism

Let’s fix this:
class animal {
public:

string name;
virtual void print();

};

print_animal(c);
print_animal(d);

Output is:
My name is Fluffy.
My name is Rex.
I am a Dachshund.

Inheritance: Polymorphism

Now using pointers, same output:
animal* A[2];
A[0] = &c;
A[1] = &d;
for (int j = 0; j < 2; j++) A[j]->print();

Output is:
My name is Fluffy.
My name is Rex.
I am a Dachshund.

Note, how this is different:
animal a = d; // default copy constructor called – now just an animal!
a.print();

Output is:
My name is Rex.

Polymorphism

 The word polymorphism means having many
forms. Typically, polymorphism occurs when
there is a hierarchy of classes and they are
related by inheritance.

 C++ polymorphism means that a call to a member
function will cause a different function to be
executed depending on the type of object that
invokes the function.

Polymorphism in C++ - tutorialspoint.com. (n.d.). Retrieved October 25, 2016, from
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

Inheritance: Abstract Classes

An abstract class is one which:

 Contains at least one “pure virtual” method

 Cannot be instantiated

 Can only be used via inheritance
class animal {

public:

string name;

void print();

virtual void speak() = 0;

}; Notation to designate as
a pure virtual method.

Abstract Classes

Pure virtual methods are not defined in the abstract class.

(Non-abstract) children of abstract classes must implement
(override) any pure virtual methods.

However, we can use pure virtual methods in the abstract
class:

void animal::print() {
cout << "My name is " << name << ". ";
speak();
cout << endl;

}

Inheritance: Constructors

 Normally, a subclass calls the default constructor
(i.e. no parameters) of the superclass before
executing its own constructor.

 You can force the subclass to call a different
constructor using this form in the definition:

animal::animal(string nm) { name = nm; }

dog::dog(string n, string b) : animal(n) {
breed = b ;

}
Superclass constructor call

4/23/2019

4

Final Example
class animal {
public:

string name;
virtual void print();
virtual void speak() = 0;

};

class dog : public animal {
public:

string breed;
void print();
void speak() { cout << "Woof!"; }

};

class cat : public animal {
public:

void speak() { cout << "Meow."; }
};

Final Example II

void animal::print() {

cout << "My name is " << name << ". ";

speak();

cout << endl;

}

void dog::print() {

animal::print();

cout << "I am a " << breed << "." << endl;

}

void print_animal(animal& a) { a.print(); }

Final Example III

int main() {

dog d;

cat c;

d.name = "Rex";

d.breed = "Dachshund";

c.name = "Fluffy";

print_animal(c);

print_animal(d);

return 0;

}

Final Example Output

My name is Fluffy. Meow.

My name is Rex. Woof!

I am a Dachshund.

Up Next

 Friday, April 26

 Lab 12 – Inheritance

 Extra credit APT due

 Monday, April 29

 TBA

 Wednesday, May 1

 Final exam review

 Project 5 due

