CSCI 262
Data Structures

20 – Binary Search Trees

Review: Binary Trees
A binary tree is defined recursively:

\[\text{tree} = \text{node} \text{ or } \text{null} \]

A binary tree is either a root node with a left child and a right child, each of which is a binary tree.

Review: Binary Tree Implementation
Just follow the recursive definition to get a simple implementation:

```
template <class T>
class binary_tree_node {
public:
  T data;
  binary_tree_node<T>* left;
  binary_tree_node<T>* right;
};
```

Search Trees
Data structure for holding comparable elements
- Efficient searching, insertion, deletion
- Underlying structure for sets, maps (BSTs)
- Also used in database indexing (B-Trees)

The basic structure:
- Nodes hold unique data values and pointers to child nodes
- Data acts as a partitioning element in the tree:
 - Child nodes/trees to the left of the data element have value less than the data element
 - Child nodes/trees to the right have a value greater than the data element

Binary Search Trees
Here’s a binary search tree (BST):
- Nodes contain strings
- Left child subtree contains only values less than root
- Root value is less than all right child subtree values

In Order Traversal
Visit left subtree, visit root, visit right subtree.

```
template <class T>
void print_inorder(binary_tree_node<T>* root) {
  if (root != NULL) {
    print_inorder(root->left);
    cout << root->data << " ";
    print_inorder(root->right);
  }
}
```
Searching

Example:
search(root, "cherry")

```cpp
template <class T>
binary_tree_node<T>* search(binary_tree_node<T>* root, T val) {
    if (root == NULL) return NULL;
    if (val == root->data) return root;
    if (val < root->data) return search(root->left, val);
    else return search(root->right, val);
}
```

Inserting

Where do we insert an item into the tree?

How would you add "fig" to this tree?

Answer: put it where you expect to find it!

```cpp
template <class T>
void insert(binary_tree_node<T>*& root, T val) {
    if (root == NULL) root = new binary_tree_node<T>(val);
    else if (val < root->info) insert(root->left, val);
    else if (val > root->info) insert(root->right, val);
}
```

Removing

3 Cases when node is in tree:
1. No children
2. One child
3. Two children

What do we do first?
What is the base case?

```cpp
template <class T>
void remove(binary_tree_node<T>* root, T val) {
    // this is trickier!
    ...
}
```

Removing Case 1: No Child

1. Find the item
2. Detach and delete

Example:
remove(root, "lemon")

```cpp```

Inserting

What if "fig" was already in our tree?

```cpp```
Removing Case 2: One Child

1. Find the item
2. Link child to parent
3. Delete

Example:
```
remove(root, "quince")
```

Removing Case 3: Two Children

1. Find the item
2. Swap with rightmost item in left subtree (why?)
3. Remove rightmost node in left subtree (Case 1 or 2)

Example:
```
remove(root, "guava")
```

Removing: Code

```
template <class T>
void remove(binary_tree_node<T>*& root, T val) {
    if (root == NULL) return NULL;
    if (val < root->data) remove(root->left, val);
    else if (val > root->data) remove(root->right, val);
    else {  // item found!
        if (root->left == NULL || root->right == NULL) {
            binary_tree_node<T>* tmp;
            if (root->left == NULL) tmp = root->right;
            else tmp = root->left;
            delete root;
            root = tmp;
        }
        else {
            binary_tree_node<T>* tmp = root->left;  // find rightmost node
            binary_tree_node<T>* parent = root;     // in left subtree
            while (tmp->right != NULL) {
                parent = tmp;
                tmp = tmp->right;
            }
            root->data = tmp->data;        // copy data to root
            if (parent == root)            // detach and delete rightmost node
                root->left = tmp->left;     // in left subtree
            else
                parent->right = tmp->left;
            delete tmp;
        }
    }
}
```

Base case: item not found, do nothing.
Recursive calls to find item to delete.
Cases 1 and 2, both. Can you see why case 1 is handled by this block?

Practice With BSTs

https://www.cs.usfca.edu/~galles/visualization/BST.html

Analysis

What is the “big-O” complexity of:
- Searching?
- Inserting?
- Removing?

Complexity of Search
So how high is a tree with N nodes?

Best case: \(h = \lceil \log_2 (N+1) \rceil = O(\log N) \)

Worst case: \(h = N \)

Height of Trees

Height-Balanced Trees (AVL)

Again, a recursive definition:

- Left and right subtrees are height-balanced
- Left and right subtrees differ in height by no more than 1

Analysis on Balanced BSTs

When trees are balanced:

- Each subtree contains roughly half the nodes
- Each step down the tree roughly halves the problem

Search, insert, delete are all \(O(\log N) \)

Self Balancing BSTs

- Trees become unbalanced through series of inserts and deletes
- Self-balancing: perform \(O(\log N) \) or fewer operations to rebalance after insert, delete
- Examples of self-balancing BSTs:
 - Red-Black trees
 - AVL trees
 - Splay trees

Rotations

We change the balance at a node via a rotation:

- This is the right rotation. The left rotation is the mirror image of this one.

Rebalancing Example (AVL)

Removing this node unbalances the tree at e.

A single right rotation restores balance.
Tree Balancing (AVL)

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Final Words

Why BSTs matter:
- Linux kernel: schedulers, ext3 filesystem, virtual memory, many more (Red-Black trees)
- Ordered set and map types (e.g., C++ STL, Java) (Red-Black trees again!)
- Database indexing (B-trees – not exactly BSTs, but related)
- Filesystem metadata indexing (B-trees or R-B)
- Lurking in your favorite OS?

Up Next

- Reading for Wednesday: Chapter 10
- Wednesday, April 24
 - Inheritance
- Friday, April 26
 - Lab 12 – Inheritance
 - Extra Credit APT due