
1/8/2019

1

CSCI 262

Data Structures

2 - Review

Welcome Back

 Variables

 Types

 Arrays

 Expressions

 Conditionals

 Branches & Loops

 Functions

 Recursion

 Classes & Objects

 Streams

 Vectors

 Strings

What you learned in CSCI 261 (or equivalent):

You remember all of this, right?

2

Hello, Let’s Review

Here’s a simple C++ program:

#include <iostream>

using namespace std;

int main() {

string hello = "Hello, world!";

cout << hello << endl;

return 0;

}

3

Hello, Let’s Review

#include <iostream>

using namespace std;

int main() {

string hello = "Hello, world!";

cout << hello << endl;

return 0;

}

This tells the compiler that it should
include symbols and types from the
standard library iostream.

This is boilerplate that lets you use standard
library symbols without extra ugly syntax.
Don’t worry about it for now, just put it in
whenever you #include something.

A function,
specifically

the
required
function

main

Return type
Function
name

(Empty)
parameter list

Type OperatorReturn
value

LiteralVariable

4

Assignment
operator

How to Review

 Remaining slides:
 Mostly review – not exhaustive, though!

 Depending on your previous exposure, maybe some
new material

 Your responsibility:
 Go through all the slides that follow

 Note any questions on old or new concepts

 Try to learn concept from textbook

 Ask instructor if you still have questions!

5

FUNDAMENTALS

Starts with “fun”!

6

1/8/2019

2

Variables

Declaration:
int x;

Use in expressions:
x + 10

Set via assignment operator:
x = 4;

Declare and initialize:
int x = 42;

7

Types

 Basic types
 Integer types:

 int : 42, -99, 103482039
 unsigned: like int, but non-negative values only
 char : 'k'

 Floating point types:
 double : 3.14159, 4.5e3, -0.0001

 Boolean type:
 bool : true, false

 Pointers
 Arrays
 Class/struct types

8

Expressions

Working definition: anything with a value is an expression:
 Variables

 x

 Indexed array variables
 arr[10]

 Literals
 42
 "Hello"
 true

 Function calls returning a value
 sqrt(17)

 Arithmetic/logical expressions using operators (next page)

9

Operators

Operators are like functions, but expressed in a
more “mathematical” format:

10

The addition operator. It is a binary infix operator, i.e., it acts on the two operands
on either side.

The two operands must be expressions. Here, one is a variable, and one is a literal.

x + 4

The logical negation operator. It is a unary prefix operator.

!a

Operators & Expressions

 Arithmetic expressions

 4 + 7 / 3.0

 (x * sqrt(2) + 1) % y

 Logical expressions:

 count == 0 // true if count = 0

 a || b && !c // a or b and not c

Mixed type expressions allowed due to numeric type conversions

Which operators act first? Use
parentheses or know precedence rules.

11

Q. What is the value 5 / 2 in C++?

Expressions and Types

Anything with a value also has a type!
 Literal types are inferred from their formats:

42 -> int
"Hello" -> char[] (not string – more soon)
true -> bool

 Variables/indexed array variables get the type of the variable:
int x;

x -> int

 Function definitions specify return type
double sqrt(double n) { … }

sqrt(42) -> double

 Operator expressions: type depends on operator and operands
int x = 1;

x + 17 -> int
x + 17.0 -> double

string a = "Hello", b = "world";
a + b -> string

12

1/8/2019

3

Loops

What if we want to print “Hello, world!” three times?

…

for (int i = 1; i <= 3; i++) {

cout << i << " Hello, world!" << endl;

}

…

Output:

1 Hello, world!

2 Hello, world!

3 Hello, world!

Initial value
for i

Loop
condition

Loop
update

13

Another Loop

…
int i = 3;

while (i > 0) {
cout << i << " Hello, world!" << endl;
i--;

}
…

Output:
3 Hello, world!
2 Hello, world!
1 Hello, world!

Also should know use of:
break
continue

14

Conditionals

if (true-false-expression) {

true-block

}

else {

false-block

}

15

Hello, if?

Let’s modify Hello to respond to an input:

…
char answer;
cout << "Say (H)ello or (G)oodbye?" << endl;
cin >> answer;

if (answer == 'H') {
cout << "Hello, world!" << endl;

} else {
cout << "Goodbye, world!" << endl;

}
…

What happens if the user enters “h” instead of “H”?

16

Arrays

…

int numbers[3];

numbers[1] = 14;

numbers[2] = -3;

numbers[3] = 7093;

…
Oops! What’s wrong here?

17

Arrays

…

int numbers[3];

numbers[0] = 14;

numbers[1] = -3;

numbers[2] = 7093;

…

Let’s print out the numbers in the array.

What about in reverse order?

18

1/8/2019

4

Loops on Arrays

…

int numbers[] = {14, -3, 7093};

for (int i = 0; i < 3; i++) {

cout << numbers[i] << endl;

}

for (int i = 2; i >= 0; i--) {

cout << numbers[i] << endl;

}

Array initialization – only
when array is declared!

19

FUNCTIONS

Even more “fun”!

20

Functions

We’ve seen one function:
int main() { … }

Here’s another:

int print_it(string msg) {

cout << msg << endl;

return msg.length();

}

21

return type parameter listname

body (statements)

Hello Functions!

A silly program.

#include <iostream>
#include <string>
#include <cmath>
using namespace std;

int print_it(string);

int main() {
int n;
double nroot;

n = print_it("Hello, world!");
nroot = sqrt(n);
cout << "The square root of the number of characters printed is ";
cout << nroot << endl;
return 0;

}

int print_it(string msg) {
cout << msg << endl;
return msg.length();

}

Note, we have to declare a function before
we use it. Here we used a function prototype
declaration; alternately we could have just
defined the entire function here.

22

Recursion

Functions can call themselves.

void print_n_times(string s, int n) {

if (n == 0) return;

cout << s << endl;

print_n_times(s, n – 1);

}

23

Base case. Very important!

Recursive call. Note that
the parameter n moves
towards the base case
condition.

Function Overloading

 C++ allows multiple functions of the same name:
void print_it(int x) {

cout << "an integer: " << x << endl;
}

void print_it(string s) {
cout << "a string: " << s << endl;

}

 What to call based on the parameter list
 So parameter lists must be different for each overload
 Can get confusing when mixed with type promotion:

print_it(3.1415); // what does this do?

24

1/8/2019

5

Default Parameters

Alternative when one overload is just a specialized version of another:

// prints n times, or just once if n omitted
void print_n_times(string s, int n = 1) {

for (int j = 0; j < n; j++) {
cout << s << endl;

}
}

With the above, we can do:
print_n_times("Hello", 10); // prints Hello 10 times

or
print_n_times("Goodbye"); // prints Goodbye once

Rules:
 Cannot omit earlier parameters, supply later ones
 Cannot overload if parameter list is interpretable as call to function with default params omitted,

e.g., cannot also define
void print_n_times(string s) { … }

25

Pass by Value or Reference

What does this program print?

void set_to_zero(int x) {

x = 0;

}

int main() {

int n = 42;

set_to_zero(n);

cout << n << endl;

}

Answer: 42
Parameter passed by value

Passing Parameters by Reference

void set_to_zero(int &x) {

x = 0;

}

int main() {

int n = 42;

set_to_zero(n);

cout << n << endl;

}

This prints: 0

The Stack

• Holds “stack frames” aka “activation records”

• Each function call results in a new stack frame

• Each stack frame contains memory for:
– Local variables declared in the function

– Arguments passed into function

– Return address for function

• When the function is exited, all of this
memory is returned to the stack
automatically.

Function Call Example
void quotient(double num, double den) {

double q = num / den;

cout << num << '/' << den << " is " << q << endl;

}

void print_quotients(int x, int y) {

quotient(x, y);

quotient(y, x);

}

int main() {

int a, b;

cout << "Please enter 2 non-zero integers: ";

cin >> a >> b;

print_quotients(a, b);

return 0;

}

Example

At start of main()
main
int a = ?
int b = ?
return address

Stack

Top of Stack

int main() {
int a, b;
cout << "Please enter 2 non-zero integers: ";
cin >> a >> b;
print_quotients(a, b);
return 0;

}

One stack frame

By custom,
the function
call stack is
visualized as
growing
down.

1/8/2019

6

Example

After getting input:

> Please enter 2 non-zero
integers: 7 2

main
int a = 7
int b = 2
return address

Stack

Top of Stack

int main() {
int a, b;
cout << "Please enter 2 non-zero integers: ";
cin >> a >> b;
print_quotients(a, b);
return 0;

}

Example

At beginning of call to
print_quotients:

> Please enter 2 non-zero
integers: 7 2

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

}

Example

At beginning of first call
to quotient:

> Please enter 2 non-zero
integers: 7 2

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

quotient
double num = 7
double den = 2
double q = ?
return address

void quotient(double num, double den) {
double q = num / den;
cout << num << '/' << den << " is " << q << endl;

}

Example

At end of call to quotient:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

quotient
double num = 7
double den = 2
double q = 3.5
return address

void quotient(double num, double den) {
double q = num / den;
cout << num << '/' << den << " is " << q << endl;

}

Example

After return from call to
quotient:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

}

Example

At beginning of second
call to quotient:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

quotient
double num = 2
double den = 7
double q = ?
return address

void quotient(double num, double den) {
double q = num / den;
cout << num << '/' << den << " is " << q << endl;

}

1/8/2019

7

Example

At end of second call to
quotient:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

> 2/7 is 0.285714

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

quotient
double num = 2
double den = 7
double q = 0.285714
return address

void quotient(double num, double den) {
double q = num / den;
cout << num << '/' << den << " is " << q << endl;

}

Example

After return from second
call to quotient:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

> 2/7 is 0.285714

main
int a = 7
int b = 2
return address

Stack

Top of Stack

print_quotients
int x = 7
int y = 2
return address

void print_quotients(int x, int y) {
quotient(x, y);
quotient(y, x);

}

Example

After call to
print_quotients:

> Please enter 2 non-zero
integers: 7 2

> 7/2 is 3.5

> 2/7 is 0.285714

main
int a = 7
int b = 2
return address

Stack

Top of Stack

CLASSES AND OBJECTS

40

Objects

C++ is an object-oriented (OO) language.

What’s an object?

A working definition:

An object is a package of data with associated behavior.

More specifically, we say that an object has properties
(fields, attributes, data, state), and that it has
associated methods (functions).

41

Classes

 Objects also have type. Objects of the same type:
 Have a common set of properties and methods
 Used in a similar manner to primitive types.

 Types are (usually) modeled by classes. Classes
formally define the properties and methods.

 Essentially, defining classes is a way to add new types
to C++.

(Classes do some other neat things, too, but we’ll get to that later.)

1/8/2019

8

Classes in C++

Classes are created via a classdeclaration:

class student {
public:

string name;
string year;
double gpa;
bool is_hungry;

student();

void eat();
void sleep();
void program(int);

};

class namevisibility
modifier

member variable declarations (properties)
(C++98 didn’t allow initializers here, but
C++11 does.)

member function declarations (methods)

Don’t forget this semi-colon!

A constructor function.

Defining Member Functions

The declaration only gave the member function
signatures (prototypes); we still have to write the
functions themselves:

void student::eat() {
is_hungry = false;

}

void student::program(int assignment) {
if (grade(this, assignment) == 'A') gpa++;

}

Etc.

Scope resolution operator defines what class the method
belongs to.

this is a special keyword that references
the object itself. More on this later.

Using Objects in C++

 Objects can be created just like chars, ints, etc.:
student s;

 Properties are referenced by the “.” operator:
s.name = "April";
s.gpa = 4.0;
double d = s.gpa;

 Methods are invoked on objects also using “.”:
s.sleep();

Some Notes on Visibility

 Many philosophies around visibility
 “All data should be private”
 Partly a matter of style

 Rule of thumb:
 If it is specific to the implementation, it is private
 Else, it is public

 Not all OO languages have visibility modifiers.
(But they all have commenting systems!)

STREAMS

Input/Output

47

Streams

 Console I/O: #include <iostream>
cin >> some_var;
cout << expression << endl;
string s;
getline(cin, s); // must #include <string>

 File I/O: #include <fstream>
ifstream fin("words.txt");
fin >> some_var;
getline(fin, s);

ofstream fout("output.txt");
fout << expression << endl;

 We’ll also learn about stringstream objects (later).

48

1/8/2019

9

VECTORS

49

Arrays and Vectors

Arrays:
int foo[10];
for (int j = 0; j < 10; j++)

foo[j] = j;

Vectors:
#include <vector>
…

vector<int> foo(10);

for (int j = 0; j < 10; j++)
foo[j] = j; // ≈ foo.at(j) = j

Gives an initial size to the
vector (optional).

Declares that this vector
will hold int values.

50

Do More with Vectors

E.g. you can append to a vector – it automatically
resizes:

vector<int> foo;

for (int j = 0; j < 10; j++) {

foo.push_back(j);

}

foo contains:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

And so much more: see Help page of course website for C++ documentation websites.

Initially size 0 without
optional argument.

51

Something New-ish

C++ 11 added a new type of for loop:

vector<int> numbers = {14, -3, 7093};

for (int x: numbers) {
cout << x << endl;

}

This denotes that x is a variable
of type int which will take on
each value in numbers in turn.

52

Note vector initializer list – can be used
almost like a literal in certain contexts.

STRINGS

53

About Strings

In C/C++, the literal "Hello" is called a string.

It is of type char[] (a char array).

Confusingly, C++ defines a new type, string.

A string is mostly interchangeable with a string (which in C++ is called a
“C-string”).

But, you can do more with string objects:

#include <string>

…

string foo = "Hello"; // note assignment of string to string

string bar = "World"; // actually implicit constructor call

string hello = foo + ", " + bar + "!";

if (foo == bar) { … } // test for equality works with string

54

1/8/2019

10

More About Strings

Know/learn the string interface!

– See Help page of course website for C++
documentation websites

– Some string methods you should know:

length operator[]

size operator+

find operator+=

substr relational operators

55

Up Next

 Please finish reviewing chapters 1 – 6, 7.7, 8, 9.1 – 9.9, and
9.11 in your textbook

 Friday, January 11:
 Lab 1 – Compile
 APT 1 assigned
 Reading: Chapter 7.1 and optionally Appendix F

 TBA (tentative: Thursday at 6pm, Sunday at 3pm)
 (Optional) Transitioning from Java to C++ sessions

 Monday, January 14
 Pointers
 Reading: 14.1 – 14.2
 Lab 1 due

56

