
3/19/2019

1

CSCI 262

Data Structures

16 – Operator Overloading

Motivation

Consider a new class for a number-like object:

class complex {

public:

double real;

double imaginary;

complex(double r, double im);

};

We’d want to add, subtract, etc. complex numbers.

Without Operators

We could create functions for this job:

complex add(complex a, complex b)

complex subtract(complex a, complex b)

Etc.

complex x(0.0, 4.5); // 4.5i

complex y(1.0, -7.0); // 1 – 7i

complex z = add(x, y); // 1 – 2.5i

With Operators

C++ let us do the following (with a little work):

complex x(0.0, 4.5); // 4.5i

complex y(1.0, -7.0); // 1 – 7i

complex z = x + y; // 1 – 2.5i

And even this (chaining):

complex c = x + z - y;

Operator Overloading

Here’s how:

complex operator+(const complex &a, const complex &b) {

return complex(

a.real + b.real,

a.imaginary + b.imaginary

);

}

Member vs. Non-Member

 We wrote the previous method as a non-member
function.

 You can do it the other way, too:
complex complex::operator +(const complex &b) const {

return complex(

real + b.real,

imaginary + b.imaginary

);

}

 Declare in the class declaration like any other method.

 Note, only one argument – for the RHS (Right Hand
Side) argument.

3/19/2019

2

Member vs. Non-Member

 Some operators (e.g., assignment) must be
member functions

 Some operators (e.g., <<, >>) cannot be member
functions

 Non-member operator functions may have to be
declared as friend functions for private access

 Most binary operators can be either

 Which you use partly a matter of style

 For now, recommend using non-member functions

Mixed Type

Suppose we want to add complex and real
numbers:

complex a(1.0, 3.1); // 1 + 3.1i

double x = 0.5;

complex z = a + x; // 1.5 + 3.1i

More Overloading

To support mixed type operations, we just add
more overloaded functions:

complex operator +(const complex &a, const complex &b);

complex operator +(const complex &a, const double &b);

complex operator +(const double &a, const complex &b);

Note this last one cannot be a member function!

Stream Output

As another example consider the following:
complex c(4.0, 0.5);
cout << c << endl; // error!

To make this work, we need to tell C++ how to print
complex values on ostreams:

ostream& operator<<(ostream &out, const complex &c) {
out << c.real << " + " << c.imaginary << 'i';
return out;

}

Note: cannot be a member function of complex!

Other Operators

 In all, C++ lets you overload some 50 different
operators!

 Some you’ve seen:
 <<, >> for stream operations (originally used for

bitwise shift operations)

 + for string concatenation (and complex addition)

 [] for string and vector element access

 = for assignment

 Besides these, a common set are the Boolean
comparison operators: <, >, <=, >=, and ==.

Rules

These are not everyone’s rules. But they’re mine.
I. Mostly, don’t. Use clearly named member

functions or static member functions instead.
II. If you must, then:

a. Be consistent – use symbols that mimic their
original use (or existing practice, as in + for
concatenation)

b. Be complete – if you overload one of a set,
overload them all - e.g., <, >, <=, >=, and ==, not
just <.

III. Exceptions to the above:
a. = part of the “big 3”
b. () used for “function objects”

3/19/2019

3

Up Next

 Reading for April 1: Chapter 13.2

 Friday, March 22
 Lab 10 – Operator Overloading

 APT 4 Due

 Project 4 assigned

 Next week: S P R I N G B R E A K!

 Monday, April 1
 The Big 3

 Lab 10 due

