
3/3/2019

1

CSCI 262

Data Structures

13 – Hashtables

Review: Sets and Maps

 Data structures for holding unique keys

 Sets just hold keys

 Maps associate keys with values

 Principal operations:

 find() - lookup key/value in set/map

 insert() - put a new key/value into set/map

 erase() - remove a key/value from set/map

You Design It

 Suppose set keys are integers in range 0-99:

 What is easiest way to store keys?

 What is the “big-O” complexity of find() in your
scheme?

O(1) Table Lookups

 My solution: vector<bool> table(100)

 If table[i] == true then i is a key in the set

 O(1) cost

 Arguably, all keys in a computer are numbers!

 However, range may be very large (too large!)

 Also, have to ensure uniqueness of number
conversion for different keys

Mod

• With the range of our keys being so large
(infinitely large?) how do we fit into a vector?

• We could just mod key’s value by vector size
to get index…

Basic Hashtable Idea

 Create an array, vector, or similar of some size

 For each key you want to store:
 Convert key to an integer (called a hash code)

 Index equals hash code mod array size

 Store key at resulting index in array

It’s that easy, except for collisions!

3/3/2019

2

Very Simple Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use key itself as hash code (i.e., hash(x) = x)

49

3

16

4

3

2

1

0

Insert 3

Insert 16

Insert 49
Note when finding keys in
the hashtable, we need to
test the value stored to see
if it equals the key – so we
don’t use bool values as in
previous slides.

Very Simple Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use key itself as hash code (i.e., hash(x) = x)

49

3

16

4

3

2

1

0

Insert 3

Insert 16

Insert 49

Insert 31… uh oh

Collision Resolution

Collisions:

 Table size typically << size of universe of keys

 Many keys will hash to same index!

 Collisions are inevitable (see Birthday Paradox)

Different schemes for dealing with collisions:

 Chaining

 Open addressing (not covered today)

Chaining

 Basic idea: store linked list at each index

 When finding:
 Search every node in linked list for item

 When inserting:
 First do a find() – if item is in linked list, do nothing

 If not present in list, insert new item into list

 When erasing:
 Find item

 If found, remove from linked list

49

3

16

Updated Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use key as hash code

4

3

2

1

0

Insert 3

Insert 16

Insert 49

Insert 31

31

Analysis of Hashing with Chaining

 Best Case (N entries, table size >= N):
 Every entry occupies a unique location
 Linked lists are all empty or have a single node
 All operations thus O(1)

 Worst case?
 N entries occupying same location
 find() is thus O(N)
 Also insert/delete O(N) since find() is first step

Inserts really average 1 + … + N = O(N2) over N inserts O(N)
per insert – gets more complicated with deletions

https://en.wikipedia.org/wiki/Birthday_problem

3/3/2019

3

Analysis, con’t.

 Worst case not so great

 However, we will likely use hashtable many
times:

 Q: what is expected (average) cost of find()?

 Probabilistic analysis sketch:

 Assume every hash code equally probable

 Expected occupancy in any slot is α = N / table size

 Expected cost of find() is 1 + α/2 = O(1)

 Typically choose table size so α ≤ 0.75 or so.

Analysis, con’t.

If “uniform hashing” assumption holds:

 find() is O(1) expected

 insert() is O(1) plus O(1) for linked list insert = O(1)

 erase() is O(1) plus O(1) for linked list erase = O(1)

All operations are expected O(1)!

(Could get unlucky, of course…)

Hash Functions

 First defense against collisions is a good hash
function!

 For example: hashing strings

 Could just take first four bytes, cast to int

 Easy and fast to compute

 Can’t distinguish “football”, “footrace”, “foot”, …

 Could just add up ascii codes

 Almost as easy and fast to compute

 Can’t distinguish “saw” from “was”, though

Designing a Good Hash Function

 A good hash function:
 Fast to compute
 Uses entire object
 Separates similar objects widely
 “Random-like”

 Java’s String hash function (string of length n):

ℎ 𝑠 =

𝑖=0

𝑛−1

𝑠[𝑖] ∙ 31𝑛−1−𝑖

s[0] · 31(n - 1) + s[1] · 31(n - 2) + ... s[n – 2] · 31 + s[n - 1]

Example

What is the index for the string “apple” with an array size of
100?

s[0] · 31(n - 1) + s[1] · 31(n - 2) + ... s[n – 2] · 31 + s[n - 1]

hash("apple")

= 'a' × 314 + 'p' × 313 + 'p' × 312 + 'l' × 31 + 'e'
= 97 × 923,521 + 112 × 29,791 + 112 × 961 + 108 × 31 + 101

= 93,029,210

If the array size was 100, then
 index = hash % array_size
 index = 10

Hashing Integers

 Division method:
 hash(k) = k mod table size
 Avoid e.g., table size = 2p → else hash(k) just low order bits of k!
 Good choice: prime not too close to exact power of 2
 Note this method dictates size of hashtable

 Multiplication method:
 Multiply k by real constant A: 0 < A < 1
 Extract fractional part of kA
 hash(k) = ⌊(table size)(kA mod 1)⌋
 Advantage: size of table doesn’t matter!

 Good choices for A: transcendental numbers,
5 −1

2
, etc.

3/3/2019

4

Multiplication Method Illustration

 Suppose keys are non-negative integers

 Suppose table size is 5

 Use A =
5 −1

2

 Insert 1,2,3,4,5
4

3

2

1

0

3

1

2

5

4

E.g., insert 3:
⌊5(3 𝐴 mod 1)⌋
= ⌊5(1.85410 mod 1)⌋
= 5 .85410
= 4.2705
= 4

Hashtables in C++ (STL)

 C++ 11 and later:
 unordered_set

 unordered_map

 C++ provides a hash function for many types

 However, for user-defined key types, must
provide a hash function
 Quick-and-dirty choice: convert object to a string

representation, then use the string hash function.

Up Next

 Wednesday, March 6

 Return and go over midterms

 Maybe some lecture as well

 Friday, March 8

 Lab 8 - Hashtable

