CSCI 262 Data Structures

13 - Hashtables

CS@Mines

Review: Sets and Maps

- Data structures for holding unique keys
- Sets just hold keys
- Maps associate keys with values
- Principal operations:
- find() - lookup key/value in set/map
- insert() - put a new key/value into set/map
- erase() - remove a key/value from set/map

You Design It

- Suppose set keys are integers in range 0-99:
- What is easiest way to store keys?
- What is the "big-O" complexity of find() in your scheme?

CS@Mines

O(1) Table Lookups

- My solution: vector<bool> table(100)
- If table[i] == true then i is a key in the set
- O(1) cost
- Arguably, all keys in a computer are numbers!
- However, range may be very large (too large!)
- Also, have to ensure uniqueness of number conversion for different keys

CS@Mines

Mod

- With the range of our keys being so large (infinitely large?) how do we fit into a vector?
- We could just mod key's value by vector size to get index...

Basic Hashtable Idea

- Create an array, vector, or similar of some size
- For each key you want to store:
- Convert key to an integer (called a hash code)
- Index equals hash code mod array size
- Store key at resulting index in array

It's that easy, except for collisions!

Very Simple Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key itself as hash code (i.e., hash $(x)=x$)

CS@Mines

Very Simple Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key itself as hash code (i.e., hash $(x)=x$)

CS@Mines

Collision Resolution

Collisions:

- Table size typically << size of universe of keys
- Many keys will hash to same index!
- Collisions are inevitable (see Birthday Paradox)

Different schemes for dealing with collisions:

- Chaining
- Open addressing (not covered today)

Chaining

- Basic idea: store linked list at each index
- When finding:
- Search every node in linked list for item
- When inserting:
- First do a find() - if item is in linked list, do nothing
- If not present in list, insert new item into list
- When erasing:
- Find item
- If found, remove from linked list

CS@Mines

Updated Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key as hash code

CS@Mines

Analysis of Hashing with Chaining

- Best Case (N entries, table size >= N):
- Every entry occupies a unique location
- Linked lists are all empty or have a single node
- All operations thus O(1)
- Worst case?
- N entries occupying same location
- find() is thus $\mathrm{O}(\mathrm{N})$
- Also insert/delete $O(N)$ since find() is first step Inserts really average $1+\ldots+\mathrm{N}=\mathrm{O}\left(\mathrm{N}^{2}\right)$ over N inserts $\rightarrow \mathrm{O}(\mathrm{N})$ per insert - gets more complicated with deletions

Analysis, con't.

- Worst case not so great
- However, we will likely use hashtable many times:
- Q: what is expected (average) cost of find()?
- Probabilistic analysis sketch:
- Assume every hash code equally probable
- Expected occupancy in any slot is $\alpha=\mathrm{N} /$ table size
- Expected cost of find() is $1+\alpha / 2=0$ (1)
- Typically choose table size so $\alpha \leq 0.75$ or so.

CS@Mines

Analysis, con't.

If "uniform hashing" assumption holds:

- find() is O(1) expected
- insert() is $\mathrm{O}(1)$ plus $\mathrm{O}(1)$ for linked list insert $=\mathrm{O}(1)$
- erase() is $\mathrm{O}(1)$ plus $\mathrm{O}(1)$ for linked list erase $=O(1)$

All operations are expected $O(1)$!
(Could get unlucky, of course...)

Hash Functions

- First defense against collisions is a good hash function!
- For example: hashing strings
- Could just take first four bytes, cast to int
- Easy and fast to compute
- Can't distinguish "football", "footrace", "foot", ...
- Could just add up ascii codes
- Almost as easy and fast to compute
- Can't distinguish "saw" from "was", though

CS@Mines

Designing a Good Hash Function

- A good hash function:
- Fast to compute
- Uses entire object
- Separates similar objects widely
- "Random-like"
- Java's String hash function (string of length n):
$h(s)=\sum_{i=0}^{n-1} s[i] \cdot 31^{n-1-i}$
$s[0] \cdot 31^{(n-1)}+s[1] \cdot 31^{(n-2)}+\ldots s[n-2] \cdot 31+s[n-1]$
CS@Mines

Example

What is the index for the string "apple" with an array size of 100?
$s[0] \cdot 31^{(n-1)}+s[1] \cdot 31^{(n-2)}+\ldots s[n-2] \cdot 31+s[n-1]$
hash("apple")

$=97 \times 923,521+112 \times 29,791+112 \times 961+108 \times 31+101$
$=93,029,210$
If the array size was 100 , then

- index = hash \% array_size
- index $=10$

Hashing Integers

- Division method:
- hash $(\mathrm{k})=\mathrm{k}$ mod table size
- Avoid e.g., table size $=2^{p} \rightarrow$ else hash(k) just low order bits of k !
- Good choice: prime not too close to exact power of 2
- Note this method dictates size of hashtable
- Multiplication method:
- Multiply k by real constant A: $0<A<1$
- Extract fractional part of kA
- hash(k) = \lfloor (table size)(kA mod 1) \rfloor
- Advantage: size of table doesn't matter!
- Good choices for A: transcendental numbers, $\frac{\sqrt{5}-1}{2}$, etc.

Multiplication Method Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use $A=\frac{\sqrt{5}-1}{2}$
- Insert 1,2,3,4,5
E.g., insert 3:
[5(3 A mod 1)] $=\lfloor 5(1.85410 \bmod 1)\rfloor$ $=\lfloor 5(.85410)\rfloor$ $=\lfloor 4.2705\rfloor$ $=4$

CS@Mines

Hashtables in C++ (STL)

- C++ 11 and later:
- unordered_set
- unordered_map
- C++ provides a hash function for many types
- However, for user-defined key types, must provide a hash function
- Quick-and-dirty choice: convert object to a string representation, then use the string hash function.

Up Next

- Wednesday, March 6
- Return and go over midterms
- Maybe some lecture as well
- Friday, March 8
- Lab 8 - Hashtable

