CSCI 262
Data Structures

13 – Hashtables

Review: Sets and Maps
- Data structures for holding unique keys
- Sets just hold keys
- Maps associate keys with values
- Principal operations:
 - find() - lookup key/value in set/map
 - insert() - put a new key/value into set/map
 - erase() - remove a key/value from set/map

You Design It
- Suppose set keys are integers in range 0-99:
 - What is easiest way to store keys?
 - What is the “big-O” complexity of find() in your scheme?

O(1) Table Lookups
- My solution: vector<bool> table(100)
 - If table[i] == true then i is a key in the set
 - O(1) cost
- Arguably, all keys in a computer are numbers!
 - However, range may be very large (too large!)
 - Also, have to ensure uniqueness of number conversion for different keys

Mod
- With the range of our keys being so large (infinitely large?) how do we fit into a vector?
- We could just mod key’s value by vector size to get index...

Basic Hashtable Idea
- Create an array, vector, or similar of some size
- For each key you want to store:
 - Convert key to an integer (called a hash code)
 - Index equals hash code mod array size
 - Store key at resulting index in array

It’s that easy, except for collisions!
Very Simple Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key itself as hash code (i.e., hash(x) = x)

```
4  0
3  3
2  1
1  16
0  31
```

Insert 49
Insert 3
Insert 16
Insert 31

Note when finding keys in the hashtable, we need to test the value stored to see if it equals the key — so we don’t use bool values as in previous slides.

Very Simple Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key itself as hash code (i.e., hash(x) = x)

```
4  0
3  3
2  1
1  16
0  31... uh oh
```

Insert 49
Insert 3
Insert 16
Insert 31

Collision Resolution

Collisions:
- Table size typically << size of universe of keys
- Many keys will hash to same index!
- Collisions are inevitable (see Birthday Paradox)

Different schemes for dealing with collisions:
- Chaining
- Open addressing (not covered today)

Chaining

- Basic idea: store linked list at each index
- When finding:
 - Search every node in linked list for item
- When inserting:
 - First do a find() — if item is in linked list, do nothing
 - If not present in list, insert new item into list
- When erasing:
 - Find item
 - If found, remove from linked list

Updated Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use key as hash code

```
4  0
3  3
2  1
1  16
0  31
```

Insert 49
Insert 3
Insert 16
Insert 31

Analysis of Hashing with Chaining

- Best Case (N entries, table size >= N):
 - Every entry occupies a unique location
 - Linked lists are all empty or have a single node
 - All operations thus O(1)

- Worst case?
 - N entries occupying same location
 - find() is thus O(N)
 - Also insert/delete O(N) since find() is first step
 - Inserts really average 1 + ... + N = O(N^2) over N inserts → O(N)
 - per insert — gets more complicated with deletions
Analysis, con’t.

- Worst case not so great
- However, we will likely use hashtable many times:
 - Q: what is expected (average) cost of find()?
 - Probabilistic analysis sketch:
 - Assume every hash code equally probable
 - Expected occupancy in any slot is \(\alpha = \frac{N}{\text{table size}} \)
 - Expected cost of find() is \(1 + \alpha/2 = O(1) \)
 - Typically choose table size so \(\alpha \leq 0.75 \) or so.

 hash("apple")
 = 'a' \times 31 + 'p' \times 31^2 + 'o' \times 31^3 + 'l' \times 31 + 'e'
 = 97 \times 923,521 + 112 \times 29,791 + 112 \times 961 + 108 \times 31 + 101
 = 93,029,210

If the array size was 100, then
- index = hash \% array size
- index = 10

Hash Functions

- First defense against collisions is a good hash function!
- For example: hashing strings
 - Could just take first four bytes, cast to int
 - Easy and fast to compute
 - Can’t distinguish “football”, “footrace”, “foot”, ...
 - Could just add up ascii codes
 - Almost as easy and fast to compute
 - Can’t distinguish “saw” from “was”, though

Designing a Good Hash Function

- A good hash function:
 - Fast to compute
 - Uses entire object
 - Separates similar objects widely
 - “Random-like”
- Java’s String hash function (string of length \(n \)):
 \[
 h(s) = \sum_{i=0}^{n-1} s[i] \times 31^{n-1-i}
 \]

 \[s[0] \times 31^{n-1} + s[1] \times 31^{n-2} + \ldots + s[n-2] \times 31 + s[n-1]\]

Hashing Integers

- Division method:
 - \(\text{hash}(k) = k \mod \text{table size} \)
 - Avoid e.g., table size = \(2^n \) → else \(\text{hash}(k) \) just low order bits of \(k \)
 - Good choice: prime not too close to exact power of 2
 - Note this method dictates size of hashtable
- Multiplication method:
 - Multiply \(k \) by real constant \(A: 0 < A < 1 \)
 - Extract fractional part of \(kA \)
 - \(\text{hash}(k) = \lfloor \text{table size}(kA \mod 1) \rfloor \)
 - Advantage: size of table doesn’t matter!
 - Good choices for \(A \): transcendental numbers, \(\sqrt{5}-1 \), etc.
Multiplication Method Illustration

- Suppose keys are non-negative integers
- Suppose table size is 5
- Use $A = \frac{\sqrt{s} - 1}{2}$
- Insert 1, 2, 3, 4, 5

 E.g., insert 3:

 $\lfloor 5 \times (3 \mod 1) \rfloor$

 $= \lfloor 5 \times 1.85410 \mod 1 \rfloor$

 $= \lfloor 5 \times 0.85410 \rfloor$

 $= 4.2705$

 $= 4$

Hashtables in C++ (STL)

- C++ 11 and later:
 - unordered_set
 - unordered_map
- C++ provides a hash function for many types
- However, for user-defined key types, must provide a hash function
 - Quick-and-dirty choice: convert object to a string representation, then use the string hash function.

Up Next

- Wednesday, March 6
 - Return and go over midterms
 - Maybe some lecture as well
- Friday, March 8
 - Lab 8 - Hashtable