Here's a simple recursive function (in pseudo-code) which raises one number to a (non-negative) power:

```pseudo
double power(double n, unsigned k)
    if k == 0 return 1
    return n * power(n, k-1)
```

What is the “Big O” cost of `power()`?

Analyzing Power

- First, note that we want to analyze `power()` in terms of `k`, not `n` (why?)
- Now, ask the following two questions:
 - How much work do we do within `power()`, excluding the recursive call?
 - How many calls do we make to `power()`?

We can think of this another way by visualizing our call stack, and ask these questions:

- How much work at each level?
- How many levels?
Analyzing Power

double power(double n, int k)
if k == 0 return 1
return n * power(n, k - 1)

How much work at each level? One comparison, one multiplication
How many levels? How many times can we subtract 1 before we get to k == 0?

Analysis:
2 operations per level * k levels
= 2k operations
In “Big O”, we drop constants, so that’s O(k).

Analyzing Power 2

Suppose we try a different approach. Note that
\[n^k = n^{k/2} \times n^{k/2} \]
However, we need to keep our exponents integral, so instead we can do
\[n^k = n^{\lceil k/2 \rceil} \times n^{\lfloor k/2 \rfloor} \]
The expression \(\lceil x \rceil \) is called the ceiling of x, and means that we round up to the nearest integer. \(\lfloor x \rfloor \) is called the floor of x, and means we round down.

If we apply this formula in pseudo-code, we get:

double power(double n, unsigned k)
if k == 0 return 1
else if k == 1 return n
else return power(n, \(\lceil k/2 \rceil \)) * power(n, \(\lfloor k/2 \rfloor \))

This base case is needed now, to ensure we get a factor of n in somewhere.

Analyzing Power 2

• Now things are more complicated, because each call to power() turns into two more calls to power(), etc.
• Instead of a stack, we can visualize this as a “call tree”:

 power()
 / \
/ \\
power() power() power() power()

• How many calls to power() here?

• For these kinds of problems, easier to approximate using an ideal case:
 • Assume k is power of 2: \(k = 2^p \)
 • Now we divide k evenly in half at each level — no “ragged” levels
 • How many levels are in our tree?
 • How much work is done at each level?
Analyzing Power 2

We do constant work in power().
So our work is less than or equal to:

\[
some\ constant \times (1 + 2 + 4 + \ldots + k/2 + k) = some\ constant \times k \times \left(\frac{1}{k} + 2/k + \ldots + \frac{1}{2} + 1\right)
\]

The sum \(1 + 1/2 + 1/4 + \ldots + 1/k\) < 2, so our total is < 2 \times some constant \times k = O(k), same as before!

A Smarter Way

Here’s a better way:

```c
double power(double n, unsigned k)
if k == 0 return 1
double m = power(n, ⌊k/2⌋)
if k is even
    return m * m
else
    return m * m * n
```

Correctness

Does this work?

Try it: let k = 11
power (n, 11)
k != 0
m = power(n, 5)
k is odd so
return (m * m * n) = (n^5 * n^5 * n) = n^11 ✓

Analyzing Power 3

Compare to previous version:

- Only 1 recursive call
- Still divide k in half at each step
Now our call “tree” is just a stack again...
But shorter than the first version’s stack!

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2 before getting to 1?

So the cost of this version is \(O(\log_2 k)\), much better than \(O(k)\).
Divide and Conquer

- Split problem into multiple smaller sub-problems
- Solve the sub-problems recursively
- Recombine solutions afterwards
- When splitting/recombination can be done efficiently, this approach is a winner

Searching with DIVIDE AND CONQUER

Linear Search

Search for a value in a sorted list.

Obvious approach:

```plaintext
// find element k in sorted list x containing n elements
search(x, k)
for i = 1 to n
    if x[i] == k return i
return NOTFOUND
```

Complexity: $O(N)$

Binary Search

Search for a value in a sorted list.

```plaintext
// find element k in sorted list x containing n elements
binary_search(x, k)
if x is empty
    return NOTFOUND
pivot = n/2 // look at element halfway through list
if x[pivot] == k
    return pivot // if found, return
else if k < x[pivot] // else search left or right sublist
    return binary_search(x[1 : pivot - 1], k)
else
    return binary_search(x[pivot+1 : n], k)
```

Binary Search Example

Search for a value in a sorted list.

Example: search for 11 in the list 1-15

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

Analysis of Binary Search

Compare with pivot
Return or choose new pivot

```
O(1)
```

```
N elements
```

```
O(1)
```

```
N/2 elements
```

```
O(1)
```

```
N/4 elements
```

Worst case: element not found

Complexity: # of times we split the list in two before getting to length 1 = $\log_2 N$
Another divide & conquer algorithm:

MERGE SORT

- **Divide and Conquer algorithm for sorting**
 - Split input list in half
 - Sort the halves recursively
 - Merge the sorted lists

```plaintext
// x is an unsorted list of n elements
merge_sort(x)
    n = length(x)
    if n == 1 return x
    left = merge_sort(x[1 : n/2])
    right = merge_sort(x[n/2 + 1 : n])
    return merge(left, right)
```

This is where the magic happens!

Merge Sort Illustrated

Analysis of Mergesort

Split = O(1)
Merge = O(N)

2 x Split = O(1)
2 x Merge = O(N)

Complexity: ?
Interlude

LOGARITHMS AND BIG O

About Logarithms

- \(\log_b b^k = k \)
- For any \(b \), \(\log_b x = \log_b x / \log_b 2 \)

This shows that the base doesn't matter in "big O" – all bases are just a constant factor from base 2.

- Because \(\log_2 x \) comes up so often, it is often abbreviated to "lg x" in computer science

Sorting in Standard Library

- Sorting in the C++ standard library
- Works on random access iterators
- Works on vectors, strings, and arrays

```cpp
#include <algorithm>

void sort(begin_iterator, end_iterator)
```

Sort example

Sorting a vector:

```cpp
#include <algorithm>
vector<int> vec = {17, 42, 100, -3, 50};
sort(vec.begin(), vec.end());
for (int n: vec) cout << n << " ";
```

Output:

```
-3 17 42 50 100
```

Another sort example

Sorting a string:

```cpp
#include <algorithm>
string s = "Hello, world!";
sort(s.begin(), s.end());
cout << s << endl;
```

Output:

```
Hello, world!
```

Sorting in the STL

SORTING IN THE STL
sort Notes

- Elements of container must be comparable using "<"
- Depending on application, may be able to overload "<" for items to be sorted
- Otherwise, have to supply a separate bool valued function as a third parameter to sort:

```cpp
bool rev(int a, int b) {
    return b < a; // default comparison is a < b
}
```

```cpp
int main() {
    vector<int> foo = {16, 4, 23, 1, 2, 17, 6};
    sort(foo.begin(), foo.end()); // {1, 2, 4, 6, 16, 17, 23}
    sort(foo.begin(), foo.end(), rev); // {23, 17, 16, 6, 4, 2, 1}
    return 0;
}
```

Up Next

- Wednesday, February 13
 - Midterm Review
- Friday, February 15
 - Lab 6 – Ancient Algorithms
- Monday, February 18
 - NO CLASS – President’s Day
- Wednesday, February 20
 - Midterm 1 – IN CLASS
- Friday, February 22
 - Optional programming contest – fun & prizes!