CSCI 262
 Data Structures

10 - Analysis of Recursive Algorithms Binary Search Merge Sort

RECURSIVE ALGORITHIMS

CS@Mines

Analyzing Power

- First, note that we want to analyze power () in terms of k, not n (why?)
- Now, ask the following two questions:
- How much work do we do within power(), excluding the recursive call?
- How many calls do we make to power()?

CS@Mines

Analyzing Power

We can think of this another way by visualizing our call stack, and ask these questions:

power()
power()

How much work at each level?
How many levels?
wer()
power()
power()

Analyzing Power

double power(double n, unsigned k)
if $k==0$ return 1
return $\mathrm{n}^{*} \operatorname{power}(\mathrm{n}, \mathrm{k}-1)$

How much work at each level?
One comparison, one multiplication
How many levels?

Analyzing Power

double power(double n, int k) if $k==0$ return 1 return $n * \operatorname{power}(\mathrm{n}, \mathrm{k}-1)$

How much work at each level?
One comparison, one multiplication
How many levels?
How many times can we subtract 1
before we get to $\mathrm{k}==0$?

Analyzing Power

Analysis:

> 2 operations per level ${ }^{*} \mathrm{k}$ levels
> $=2 \mathrm{k}$ operations

In "Big O", we drop constants, so that's O(k).

Analyzing Power 2

Suppose we try a different approach. Note that

$$
n^{k}=n^{k / 2} \times n^{k / 2}
$$

However, we need to keep our exponents integral, so instead we can do

$$
\mathrm{n}^{\mathrm{k}}=\mathrm{n}^{[\mathrm{k} / 2]} \times \mathrm{n}^{[\mathrm{k} / 2\rfloor}
$$

The expression $[\mathrm{x}]$ is called the ceiling of x , and means that we round up to the nearest integer. $\lfloor x\rfloor$ is called the floor of x , and means we round down.

Analyzing Power 2

If we apply this formula in pseudo-code, we get:
double power (double n, unsigned k) This base case is needed
if $k==0$ return 1 now, to ensure we get a else if $k==1$ return n else return $\operatorname{power}(n,\lceil k / 2\rceil) * \operatorname{power}(n,\lfloor k / 2\rfloor)$

Analyzing Power 2

- Now things are more complicated, because each call to power() turns into two more calls to power (), etc.
- Instead of a stack, we can visualize this as a "call tree":

- How many calls to power() here?

Analyzing Power 2

1 call to power()

2 calls to power()

4 calls to power()
 . .\square $\square \square$ \square $\square \square \square \square \square \square \square \square$

A Smarter Way

Here's a better way:
double power(double n, unsigned k) if $k==0$ return 1 double $m=\operatorname{power}(n, \quad[k / 2\rfloor)$ if k is even
return m * m
else return m * m * n

CS@Mines

Analyzing Power 2

We do constant work in power().
So our work is less than or equal to: some constant $\times(1+2+4+\ldots+k / 2+k)$
$=\quad$ some constant $\times \mathrm{k} \times(1 / \mathrm{k}+2 / \mathrm{k}+\ldots+1 / 2+1)$

The sum $1+1 / 2+1 / 4+\ldots 1 / k<2$, so our total is
$<2 \times$ some constant $\times \mathrm{k}=\mathrm{O}(\mathrm{k})$, same as before!

Correctness

Does this work?
if $k==0$ return 1 double $m=\operatorname{power}(n,\lfloor k / 2\rfloor)$ if k is even return $m * m$
else
return m * m * n
Try it: let $\mathrm{k}=11$
power ($n, 11$)
$\mathrm{k}!=0$
$m=$ power $(n, 5)$
k is odd so return $(m * m * n)=\left(n^{5} * n^{5} * n\right)=n^{11} \quad \checkmark$ CS@Mines

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2 before getting to 1?

So the cost of this version is $\mathrm{O}\left(\log _{2} \mathrm{k}\right)$, much better than $\mathrm{O}(\mathrm{k})$.

Searching with

DIVIDE AND CONQUER

Divide and Conquer

- Split problem into multiple smaller subproblems
- Solve the sub-problems recursively
- Recombine solutions afterwards
- When splitting/recombination can be done efficiently, this approach is a winner

Linear Search

Search for a value in a sorted list.
Obvious approach:
// find element k in sorted list x containing n elements $\operatorname{search}(x, k)$
for $i=1$ to n
Pseudocode usually
index $=0$
return NOTFOUND

Binary Search

Search for a value in a sorted list.
// find element k in sorted list x containing n elements binary_search (x, k)
if x is empty

> return NOTFOUND
pivot $=n / 2 \quad / /$ look at element halfway through list if $x[$ pivot $]==k$ return pivot // if found, return
else if k < x [pivot] // else search left or right sublist return binary_search(x[1 : pivot-1], k)
else return binary_search(x[pivot+1 : n], k)

CS@Mines

Merge Sort

- Divide and Conquer algorithm for sorting
- Split input list in half
- Sort the halves recursively
- Merge the sorted lists
// x is an unsorted list of n elements merge_sort (x) $\mathrm{n}=$ length (x)
if $n=1$ return x
left = merge_sort(x[1 : n/2])
right = merge_sort(x[n/2 + 1 : n])
return merge(left, right)

Merge Sort

- Divide and Conquer algorithm for sorting
- Split input list in half
- Sort the halves recursively
- Merge the sorted lists
// x is an unsorted list of n elements
merge_sort (x)
$\mathrm{n}=$ length (x)
if $\mathrm{n}==1$ return x
left $=$ merge_sort($x[1$: n/2])
right $=$ merge_sort (x[n/2 + $1: n])$
return merge(left, right) . \qquad

Merge Sort Illustrated

Inter
LOGARITHMS AND BIG O

About Logarithms

- $\log _{b} b^{k}=k$
- For any b, $\log _{2} x=\log _{b} x / \log _{b} 2$

This shows that the base
doesn't matter in "big O"
all bases are just a constant
factor from base 2 .

- Because " $\log _{2} x$ " comes up so often, it is often abbreviated to " $\lg x$ " in computer science

Sorting in Standard Library

- Sorting in the C++ standard library
- Works on random access iterators
- Works on vectors, strings, and arrays
\#include <algorithm>
void sort(begin_iterator, end_iterator)
SORTING IN THE STL

CS@Mines

sort example

Sorting a vector:
\#include <algorithm>
vector<int> vec $=\{17,42,100,-3,50\}$;
sort(vec.begin(), vec.end());
for (int n : vec) cout << $n \ll " n$;
Output:
$-31742 \quad 50100$

Another sort example

Sorting a string:
\#include <algorithm>
string $s=$ "Hello, world!";
sort(s.begin(), s.end());
cout << s << endl;
Output:
!, Hdellloorw

sort Notes

Up Next

- Elements of container must be comparable using "<"
" Depending on application, may be able to overload "<" for items to be sorted
- Otherwise, have to supply a separate bool valued function as a third parameter to sort:
bool rev(int a, int b) \{
return b < a; // default comparison is $\mathrm{a}<\mathrm{b}$
\}
int main() \{
vector<int> foo $=\{16,4,23,1,2,17,6\}$;
sort(foo.begin(), foo.end()); // \{1, 2, 4, 6, 16, 17, 23\} sort(foo.begin(), foo.end(), rev); // \{23, 17, 16, 6, 4, 2, 1\} return 0 ;
\}

