CSCI 262
Data Structures

21 – Binary Search Trees

Review: Binary Trees
A binary tree is defined recursively:

\[
\begin{align*}
\text{root} & \quad = \quad \text{left} \quad \text{or} \quad \text{right} \\
\text{or} & \quad \text{empty} \\
\end{align*}
\]

A binary tree is a root node with a left child and a right child, each of which is a binary tree.

Review: Binary Tree Implementation
Just follow the recursive definition to get a simple implementation:

```cpp
template <class T>
class binary_tree_node {
public:
    T data;
    binary_tree_node<T>* left;
    binary_tree_node<T>* right;
};
```

Search Trees
Data structure for holding comparable elements
- Efficient searching, insertion, deletion
- Underlying structure for sets, maps (BSTs)
- Also used in database indexing (B-Trees)

The basic structure:
- Nodes hold unique data values and pointers to child nodes
- Data acts as a partitioning element in the tree:
 - Child nodes/trees to the left of the data element have value less than the data element
 - Child nodes/trees to the right have a value greater than the data element

Binary Search Trees
Here's a binary search tree (BST):
- Nodes contain strings
- Left child subtree contains only values less than root
- Root value is less than all right child subtree values

In Order Traversal
Visit left subtree, visit root, visit right subtree.

```cpp
template <class T>
void print_inorder(binary_tree_node<T> * root) {
    if (root != NULL) {
        print_inorder(root->left);
        cout << root->data << " ";
        print_inorder(root->right);
    }
}
```
Searching

Example:
search(root, "cherry")

```
template <class T>
binary_tree_node<T>* search(binary_tree_node<T>* root, T val) {
    if (root == NULL) return NULL;
    if (val == root->data) return root;
    if (val < root->data) return search(root->left, val);
    else return search(root->right, val);
}
```

Inserting

Where do we insert an item into the tree?

```
void insert(binary_tree_node<T>* & root, T val) {
    if (root == NULL) root = new binary_tree_node<T>(val);
    else if (val < tree->info) insert(tree->left, val);
    else if (val > tree->info) insert(tree->right, val);
}
```

Removing

```
void remove(binary_tree_node<T>* root, T val) {
    // this is trickier!

    Example:
    remove(root, "lemon")
}
```
Removing Case 2: One Child

1. Find the item
2. Link child to parent
3. Delete

Example: remove(root, "quince")

Removing Case 3: Two Children

1. Find the item
2. Swap with rightmost item in left subtree (why?)
3. Remove rightmost node in left subtree (Case 1 or 2)

Example: remove(root, "guava")

Removing: Code

```cpp
template class TreeNode;

void remove(TreeNode* & root, int val) {
    if (root == NULL) return NULL;
    if (val < root->data) remove(root->left, val);
    else if (val > root->data) remove(root->right, val);
    else { // item found!
        if (root->left == NULL || root->right == NULL) {
            TreeNode* tmp;
            if (root->left == NULL)
                tmp = root->right;
            else
                tmp = root->left;
            delete root;
            root = tmp;
        } else {
            TreeNode* tmp = root->left; // find rightmost node
            TreeNode* parent = root; // in left subtree
            while (tmp->right != NULL) {
                parent = tmp;
                tmp = tmp->right;
            }
            root->data = tmp->data;        // copy data to root
            if (parent == root)            // detach and delete rightmost node
                root->left = tmp->left;     // in left subtree
            else
                parent->right = tmp->left;
            delete tmp;
        }
    }
}
```

Practice With BSTs

https://www.cs.usfca.edu/~galles/visualization/BST.html

Analysis

What is the “big-O” complexity of:
- Searching?
- Inserting?
- Removing?
So how high is a tree with \(N \) nodes?

Best case: \(h = \lceil \log_2 (N+1) \rceil = O(\log N) \)

Worst case: \(h = N \)

Again, a recursive definition:
- Left and right subtrees are height-balanced
- Left and right subtrees differ in height by no more than 1

Which of these are height-balanced?

Analysis on Balanced BSTs

- Each subtree contains roughly half the nodes
- Each step down the tree roughly halves the problem

Search, insert, delete are all \(O(\log N) \)

Self Balancing BSTs

- Trees become unbalanced through series of inserts and deletes
- Self-balancing: perform \(O(\log N) \) or fewer operations to rebalance after insert, delete
- Examples of self-balancing BSTs:
 - Red-Black trees
 - AVL trees
 - Splay trees

Rotations

We change the balance at a node via a rotation:

This is the right rotation. The left rotation is the mirror image of this one.

If the tree shown was a BST, is the new tree a BST?

Rebalancing Example (AVL)

Removing this node unbalances the tree at \(e \).

A single right rotation restores balance.
Tree Balancing (AVL)

https://www.cs.usfca.edu/~galles/visualization/AVLtreed.html

AVL Tree

<table>
<thead>
<tr>
<th>Insert</th>
<th>Delete</th>
<th>Final</th>
<th>Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>80</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>120</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

Final Words

Why BSTs matter:

- Linux kernel: schedulers, ext3 filesystem, virtual memory, many more (Red-Black trees)
- Ordered set and map types (e.g., C++ STL, Java) (Red-Black trees again!)
- Database indexing (B-trees – not exactly BSTs, but related)
- Filesystem metadata indexing (B-trees or R-B)
- Lurking in your favorite OS?

Up Next

- Friday, April 13
 - E-DAYS – NO CLASS
- Monday, April 16
 - Midterm review
 - APT 5 due
- Wednesday, April 18
 - Midterm 2 (in class)
- Friday, April 20
 - Fun & Games instead of lab (optional)