Recursive Function Analysis

Here’s a simple recursive function which raises one number to a (non-negative) power:

```cpp
double power(double n, unsigned k)
if k == 0 return 1
return n * power(n, k-1)
```

What is the cost of `power()`?

Analyzing Power

First, note that we want to analyze power in terms of `k`, not `n` (why?)

Now, ask the following two questions:
- How much work do we do within `power()`, excluding the recursive call?
- How many calls do we make to `power()`?

Analyzing Power

We can think of this another way by visualizing our call stack, and ask these questions:
- How much work at each level?
- How many levels?
Analyzing Power

double power(double n, int k)
if k == 0 return 1
return n * power(n, k-1)

How much work at each level?
One comparison, one multiplication

How many levels?
How many times can we subtract 1 before we get to k == 0?

Analysis:
2 operations per level * k levels
= 2k operations
In "Big O", we drop constants, so that’s O(k).

Analyzing Power 2

Suppose we try a different approach. This one is doubly-recursive:

double power(double n, unsigned k)
if k == 0 return 1
else if k == 1 return n
else return power(n, ⌈k/2⌉) * power(n, ⌊k/2⌋)

The expression ⌈x⌉ is called the ceiling of x, and means that we round up to the nearest integer. ⌊x⌋ is called the floor of x, and means we round down.

Analyzing Power 2

• Now things are more complicated, because each call to power turns into two more calls to power, etc.
• Instead of a stack, we can visualize this as a “call tree”:

• How many calls to power here?

Analyzing Power 2

• For these kinds of problems, easier to approximate using an ideal case:
 • Assume k is power of 2: k = 2^p
 • Now we divide k evenly in half at each level

 • How many levels are in our tree?
 • How much work is done at each level?

Analyzing Power 2

1 call to power
2 calls to power
4 calls to power
...
2^p calls to power
k calls
Analyzing Power 2

We do constant work in power.

So our work is less than or equal to:

\[
\text{some constant} \times (1 + 2 + 4 + \ldots + k/2 + k)
\]

\[
= \text{some constant} \times k \times \left(1/k + \ldots + 1/4 + 1/2 + 1\right)
\]

The sum \(1 + 1/2 + 1/4 + \ldots + 1/k\) < 2, so our total is

< 2 \times \text{some constant} \times k = O(k), \text{ same as before!}

A Smarter Way

Here's a better way:

```c
double power(double n, unsigned k)
{
    if k == 0 return 1
    double m = power(n, \lfloor k/2 \rfloor)
    if k is even
        return m * m
    else
        return m * m * n
}
```

Correctness

Does this work?

Try it: let \(k = 11\)
power \((n, 11)\)

\[m = \text{power} (n, 5)\]

\(k\) is odd so

\[
\text{return } (m \times m \times n) = (n^5 \times n^5 \times n) = n^{11} \checkmark
\]

Analyzing Power 3

Compare to previous version:

- Only 1 recursive call
- Still divide \(k\) in half at each step

Now our call "tree" is just a stack again...

But shorter than the first version's stack!

Analyzing Power 3

How high is the stack?

How many times can you divide a number by 2 before getting to 1?

So the cost of this version is \(O(\log_2 k)\), much better than \(O(k)\).
Divide and Conquer

- Split problem into multiple smaller sub-problems
- Solve the sub-problems *recursively*
- Recombine solutions afterwards
- When splitting/recombination can be done efficiently, this approach is a winner

Linear Search

Search for a value in a sorted list.

Obvious approach:

```java
// find element k in sorted list x containing n elements
search(x, k)
for i = 1 to n
if x[i] == k return i
return NOTFOUND
```

Complexity: O(N)

Binary Search

Search for a value in a sorted list.

// find element k in sorted list x containing n elements
```java
binary_search(x, k)
if x is empty return NOTFOUND
pivot = n/2 // look at element halfway through list
if x[pivot] == k return pivot // if found, return
else if k < x[pivot] // else search left or right sublist
    return binary_search(x[1 : pivot-1], k)
else
    return binary_search(x[pivot+1 : n], k)
```

Binary Search Example

Search for a value in a sorted list.

Example: search for 11 in the list 1-15

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

```
pivot
9 10 11 12 13 14 15
```

```
9 10 11
```

```
11
```

Analysis of Binary Search

```
Compare with pivot
Return or choose
new pivot O(1)
```

```
O(1)
```

```
N/2 elements
```

Worst case: element not found

```
O(1)
```

```
N elements
```

```
N/4 elements
```

```
1
```

```
another divide & conquer algorithm:
```
MERGE SORT
```
Merge Sort

- Divide and Conquer algorithm for sorting
  - Split input list in half
  - Sort the halves
  - Merge the sorted lists

merge_sort(x)
    n = length(x)
    if n == 1 return x
    left = merge_sort(x[1 : n/2])
    right = merge_sort(x[n/2 + 1 : n])
    return merge(left, right)

Analysis of Mergesort

Split = O(1)
Merge = O(N)
2 x Split = O(2)
3 x Merge = O(3)

Complexity: ?

LOGARITHMS AND BIG O
**About Logarithms**

- $\log_b b^k = k$
- For any $b$, $\log_b x = \frac{\log_b x}{\log_b 2}$
  
  This shows that the base doesn't matter in “$\big O$” — all bases are just a constant factor from base 2.

- Because “$\log_2 x$” comes up so often, it is often abbreviated to “$\lg x$” in computer science

**SORTING IN THE STL**

**Sorting in Standard Library**

- Sorting in the C++ standard library
  - Works on random access iterators
  - Works on vectors, strings, and arrays

```cpp
#include <algorithm>

void sort(begin_iterator, end_iterator)
```

**sort example**

Sorting a vector:
```
#include <algorithm>

vector<int> vec = {17, 42, 100, -3, 50};
sort(vec.begin(), vec.end());
for (int n: vec) cout << n << " ";
```

Output:
```
-3 17 42 50 100
```

Another sort example

Sorting a string:
```
#include <algorithm>

string str = "Hello, world!";
...
sort(s.begin(), s.end());
cout << s << endl;
```

**sort Notes**

- Elements of container must be comparable using "<"
- Depending on application, may be able to overload "<" for items to be sorted
- Otherwise, have to supply a separate bool valued function as a third parameter to sort:

```cpp
bool rev(int a, int b) { return b < a; } // default comparison is a < b

int main() {
 vector<int> foo = {16, 4, 23, 1, 2, 17, 6};
 sort(foo.begin(), foo.end()); // {1, 2, 4, 6, 10, 17, 23}
 sort(foo.begin(), foo.end(), rev); // {16, 17, 10, 6, 4, 2, 1}
 return 0;
}
```
Up Next

- Wednesday, April 4
  - Linked Lists
  - Read Chapter 16
- Friday, April 6
  - Lab 10 – Inheritance
  - Extra Credit APT due
  - APT 5 assigned